Applied Physics B

, Volume 87, Issue 1, pp 157–162

Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy

  • R. Lewicki
  • G. Wysocki
  • A.A. Kosterev
  • F.K. Tittel


Quartz-enhanced photoacoustic spectroscopy was employed for trace gas concentration measurements of CO2 and NH3 using a continuous wave thermoelectrically cooled, distributed feedback diode laser operating at 2 μm. A normalized noise equivalent absorption coefficient, NNEA(1σ)=1.4×10-8 cm-1W/\(\sqrt{\text{Hz}}\) was obtained for CO2 using the R18 line of the 2ν13 band at 4991.26 cm-1. This corresponds to minimum detection limit (1σ) of 18 parts per million (ppm) for a 1 s lock-in time constant. The influence of the H2O presence in the sample gas mixture on the CO2 sensor performance was investigated. Ammonia detection was performed using the PP6(6)S line of the ν34 band at 4986.99 cm-1. A detection limit (1σ) of 3 ppm for NH3 concentration with a 1 s lock-in time constant was achieved. This results in a normalized noise equivalent absorption of NNEA(1σ)=8.9×10-9 cm-1W/\(\sqrt{\text{Hz}}\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.J.M. Harren, G. Cotti, J. Oomens, S. te Lintel Hekkert, Photoacoustic Spectroscopy in Trace Gas Monitoring, In: Encyclopedia of Analytical Chemistry ed. by R.A. Meyers (John Wiley Ltd, Chichester, 2000), pp. 2203–2226Google Scholar
  2. 2.
    A. Rossi, R. Buffa, Appl. Phys. Lett. 87, 041110 (2005)CrossRefGoogle Scholar
  3. 3.
    A. Miklos, P. Hess, Z. Bozoki, Rev. Sci. Instrum. 72, 1937 (2001)CrossRefADSGoogle Scholar
  4. 4.
    M.E. Webber, M. Pushkarsky, C.K.N. Patel, Appl. Opt. 42, 2119 (2003)ADSGoogle Scholar
  5. 5.
    F.G.C. Bijnen, J. Reuss, F.J.M. Harren, Rev. Sci. Instrum. 67, 2914 (1996)CrossRefADSGoogle Scholar
  6. 6.
    D. Costopoulos, A. Miklos, P. Hess, Appl. Phys. B 75, 385 (2002)CrossRefADSGoogle Scholar
  7. 7.
    T. Laurila, H. Cattaneo, V. Koskinen, J. Kauppinen, R. Hernberg, Opt. Express 13, 2453 (2005)CrossRefADSGoogle Scholar
  8. 8.
    K. Wilcken, J. Kauppinen, Appl. Spectrosc. 57, 1087 (2003)CrossRefGoogle Scholar
  9. 9.
    A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 1902 (2002)ADSGoogle Scholar
  10. 10.
    G. Wysocki, J. Heitz, D. Bauerle, Appl. Phys. Lett. 84, 2025 (2004)CrossRefADSGoogle Scholar
  11. 11.
    W.H.J. Rensena, N.F. van Hulst, Appl. Phys. Lett. 75, 1640 (1999)CrossRefADSGoogle Scholar
  12. 12.
    M. Todorovic, S. Schultz, J. Appl. Phys. 83, 6229 (1998)CrossRefADSGoogle Scholar
  13. 13.
    A.A. Kosterev, Y.A. Bakhirkin, F.K. Tittel, Appl. Phys. B 80, 133 (2005)CrossRefADSGoogle Scholar
  14. 14.
    A.A. Kosterev, F.K. Tittel, D. Serebryakov, A. Malinovsky, I. Morozov, Rev. Sci. Instrum. 76, 043105 (2005)CrossRefGoogle Scholar
  15. 15.
    Y.H. Pao, In: Optoacoustic, Spectroscopy and Detection (Academic Press, New York, 1977)Google Scholar
  16. 16.
    I. Linnerud, P. Kaspersen, T. Jaeger, Appl. Phys. B 67, 297 (1998)CrossRefADSGoogle Scholar
  17. 17.
    G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 85, 301 (2006)CrossRefADSGoogle Scholar
  18. 18.
    L.S. Rothman, A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, J. Quantum Spectrosc. Radiat. Transf. 82, 5 (2003)CrossRefADSGoogle Scholar
  19. 19.
    W.E. Meador, L.W. Townsend, G.A. Miner, Effects of H2O Vapor on Vibrational Relaxation in Expanding and Contracting Flows, 34th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 15–18, 1996, AIAA-96-0105Google Scholar
  20. 20.
    R.L. Taylor, S. Bitterman, Rev. Mod. Phys. 41, 26 (1969)CrossRefADSGoogle Scholar
  21. 21.
    A. Cottet, T. Lieuwen, “Acoustic Absorption Measurements for Characterization of Gas Mixing”, Georgia Institute of Technology, Atlanta, GA, 9th AIAA/CEAS Aeroacoustics Conference, Hilton Head, SC, May 12–14, 2003Google Scholar
  22. 22.
    A.A. Kosterev, Y.A. Bakhirkin, F.K. Tittel, S. Blaser, Y. Bonetti, L. Hvozdara, Appl. Phys. B 78, 673 (2004)CrossRefADSGoogle Scholar
  23. 23.
    A.A. Kosterev, T.S. Mosely, F.K. Tittel, Appl. Phys. B 85, 295 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • R. Lewicki
    • 1
  • G. Wysocki
    • 1
  • A.A. Kosterev
    • 1
  • F.K. Tittel
    • 1
  1. 1.Department of Electrical and Computer Engineering, MS-366Rice UniversityHoustonUSA

Personalised recommendations