Advertisement

Applied Physics B

, Volume 86, Issue 3, pp 537–545 | Cite as

Photophysical characterization of pyrromethene 597 laser dye in silicon-containing organic matrices

  • T. Susdorf
  • D. del Agua
  • A. Tyagi
  • A. PenzkoferEmail author
  • O. García
  • R. Sastre
  • A. Costela
  • I. García-Moreno
Article

Abstract

Samples of dipyrromethene-BF2 dye PM597 incorporated in copolymers of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) with methyl methacrylate (MMA) and 2-hydroxyethylmethacrylate (HEMA), and in terpolymers of MMA, HEMA and TMSPMA are characterized. The absorption cross-section spectra, stimulated emission cross-section spectra, and the excited-state absorption cross-section at 527 nm are determined. The fluorescence quantum distributions and fluorescence lifetimes are measured. The photo-degradation is studied under cw laser excitation conditions and quantum yields of photo-degradation are extracted. PM597 solid state samples are compared with PM597 in liquid ethyl acetate solution. The fluorescence quantum yield of PM597 is higher in doped samples (around 70%) compared to PM597 in ethyl acetate (43%). The excited-state absorption cross-section was found to be negligibly small. The photo-stability is considerably larger in the polymeric samples compared to the liquid solutions.

Keywords

Ethyl Acetate Quantum Yield HEMA Propyl Methacrylate Ethyl Acetate Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Costela, I. García-Moreno, R. Sastre, In: Handbook of Advanced Electronic and Photonic Materials and Devices, ed. by H.S. Nalwa, (Academic Press, San Diego, CA, 2001) Vol. 7, p. 161Google Scholar
  2. 2.
    T.G. Pavlopoulos, J.H. Boyer, K. Thanggaraj, G. Sathyamoorthi, M.P. Shah, M.L. Soong, Appl. Opt. 31, 7089 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    T.G. Pavlopoulos, Prog. Quantum Electron. 26, 193 (2002)CrossRefADSGoogle Scholar
  4. 4.
    A. Costela, I. García-Moreno, R. Sastre, Phys. Chem. Chem. Phys. 5, 4745 (2003)CrossRefGoogle Scholar
  5. 5.
    A. Costela, I. García-Moreno, C. Gómez, O. García, R. Sastre, Chem. Phys. Lett. 369, 656 (2003)CrossRefADSGoogle Scholar
  6. 6.
    M. Ahmad, T.A. King, D. Ko, B.H. Cha, J. Lee, Opt. Commun. 203, 327 (2002)CrossRefADSGoogle Scholar
  7. 7.
    Q.Y. Zhang, W.X. Que, S. Buddhudu, K. Pita, J. Phys. Chem. Solids 63, 1723 (2002)CrossRefADSGoogle Scholar
  8. 8.
    T.H. Nhung, M. Canva, T.T.A. Dao, F. Chaput, A. Brun, N.D. Hung, J.P. Boilot, Appl. Opt. 42, 2213 (2003)ADSGoogle Scholar
  9. 9.
    Y. Yang, M. Wang, G. Qian, Z. Wang, X. Fan, Opt. Mater. 24, 621 (2004)CrossRefADSGoogle Scholar
  10. 10.
    F. Amat-Guerri, M. Carrascoso, M. Liras, R. Sastre, Photochem. Photobiol. 77, 577 (2003)CrossRefGoogle Scholar
  11. 11.
    F. López Arbeloa, J. Bañuelos Prieto, I. López Arbeloa, A. Costela, I. García-Moreno, C. Gómez, F. Amat-Guerri, M. Liras, R. Sastre, Photochem. Photobiol. 78, 30 (2003)CrossRefGoogle Scholar
  12. 12.
    A. Bergmann, W. Holzer, R. Stark, H. Gratz, A. Penzkofer, F. Amat-Guerri, A. Costela, I. García-Moreno, R. Sastre, Chem. Phys. 271, 201 (2001)CrossRefGoogle Scholar
  13. 13.
    I. García-Moreno, A. Costela, L. Campo, R. Sastre, F. Amat-Guerri, M. Liras, F. López Arbeloa, J. Bañuelos Prieto, I. López Arbeloa, J. Phys. Chem. A 108, 3315 (2004)CrossRefGoogle Scholar
  14. 14.
    A. Costela, I. García-Moreno, C. Gómez, F. Amat-Guerri, M. Liras, R. Sastre, Appl. Phys. B 76, 365 (2003)CrossRefADSGoogle Scholar
  15. 15.
    M. Álvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gómez, M. Liras, R. Sastre, Appl. Phys. B 80, 993 (2005)CrossRefADSGoogle Scholar
  16. 16.
    A.J. Finlayson, N. Peters, P.V. Kolinsky, M.R.W. Venner, Appl. Phys. Lett. 75, 457 (1999)CrossRefADSGoogle Scholar
  17. 17.
    V.S. Nechitailo, R.S. Anderson, S.C. Picarello, G.A. Matyushin, J.H. Bohn, Proc. SPIE 3613, 106 (1999)CrossRefADSGoogle Scholar
  18. 18.
    X. Xudong, H. Lili, H. Guosong, J. Zhonghong, Chin. J. Lasers A 27, 307 (2000)Google Scholar
  19. 19.
    H.R. Aldag, S.M. Dolotov, M.F. Koldunov, Ya.V. Krachenko, A.A. Malenkov, D.P. Pacheco, A.V. Reznichenko, G.P. Roskova, Proc. SPIE 3929, 133 (2000)CrossRefADSGoogle Scholar
  20. 20.
    E. Yariv, S. Schultheiss, T. Saradarov, R. Reisfeld, Opt. Mater. 16, 29 (2001)CrossRefADSGoogle Scholar
  21. 21.
    S.Y. Lam, M.J. Damzen, Appl. Phys B 77, 577 (2003)CrossRefADSGoogle Scholar
  22. 22.
    A. Costela, I. García-Moreno, D. del Agua, O. García, R. Sastre, Appl. Phys. Lett. 85, 2160 (2004)CrossRefADSGoogle Scholar
  23. 23.
    R. Jakubiak, L.V. Natarajan, V. Tondiglia, G. He, P.N. Prasad, T.J. Bunning, R.A. Vaia, Appl. Phys. Lett. 85, 6095 (2004)CrossRefADSGoogle Scholar
  24. 24.
    H.C. Lee, Y.P. Kim, Hankook Kwanghak Hoeji 16, 143 (2005)Google Scholar
  25. 25.
    G.S. He, P.N. Prasad, IEEE J. Quantum Electron. QE-34, 473 (1998)CrossRefADSGoogle Scholar
  26. 26.
    J.B. Prieto, F.L. Arbeloa, V.M. Martínez, T.A. López, I.L. Arbeloa, J. Phys. Chem. A 108, 5503 (2004)CrossRefGoogle Scholar
  27. 27.
    N. Tanaka, W.N. Sisk, J. Photochem. Photobiol. A 172, 109 (2005)CrossRefGoogle Scholar
  28. 28.
    R. Reisfeld, E. Yariv, H. Minti, Opt. Mater. 8, 31 (1997)CrossRefGoogle Scholar
  29. 29.
    I. García-Moreno, A. Costela, A. Cuesta, O. García, D. del Agua, R. Sastre, J. Phys. Chem. B. 109, 21618 (2005)CrossRefGoogle Scholar
  30. 30.
    L.W. Tilton, J.K. Taylor, In: Physical methods in Chemical Analysis, ed. by W.G. Berl, (Academic Press, New York, 1960) Vol. 1Google Scholar
  31. 31.
    A. Penzkofer, H. Glas, J. Schmailzl, Chem. Phys. 70, 47 (1982)CrossRefGoogle Scholar
  32. 32.
    A. Penzkofer, W. Leupacher, J. Luminesc. 37, 61 (1987)CrossRefADSGoogle Scholar
  33. 33.
    W. Holzer, M. Pichlmaier, A. Penzkofer, D.D.C. Bradley, W.J. Blau, Chem. Phys. 246, 445 (1999)CrossRefGoogle Scholar
  34. 34.
    W. Bäumler, A. Penzkofer, Chem. Phys. 140, 75 (1990)CrossRefGoogle Scholar
  35. 35.
    F. Dörr, Angew. Chem. 78, 457 (1966)Google Scholar
  36. 36.
    A. Penzkofer, Appl. Phys. B 46, 43 (1988)CrossRefADSGoogle Scholar
  37. 37.
    W. Scheidler, A. Penzkofer, Opt. Commun. 80, 127 (1990)CrossRefADSGoogle Scholar
  38. 38.
    O.G. Peterson, J.P. Webb, W.C. McColgin, J.H. Eberly, J. Appl. Phys. 42, 1917 (1971)CrossRefADSGoogle Scholar
  39. 39.
    A.V. Deshpande, A. Beidoun, A. Penzkofer, G. Wagenblast, Chem. Phys. 142, 123 (1990)CrossRefGoogle Scholar
  40. 40.
    T.J. Chuang, K.B. Eisenthal, Chem. Phys. Lett. 11, 368 (1971)CrossRefADSGoogle Scholar
  41. 41.
    H.E. Lessing, A. von Jena, In: Laser Handbook, ed. by M.L. Stitch, (North-Holland, Amsterdam, 1979) Vol. 3, pp.753Google Scholar
  42. 42.
    C.A. Parker, Photoluminescence of Solutions (Elsevier, Amsterdam, 1968)Google Scholar
  43. 43.
    G. Weber, In: Fluorescence and Phosphorescence Analysis, Principles and Applications, ed. by D.M. Hercules, (Interscience, New York, 1966), p. 217Google Scholar
  44. 44.
    P. Weidner, A. Penzkofer, Chem. Phys. 191, 303 (1995)CrossRefADSGoogle Scholar
  45. 45.
    T. Förster, Fluoreszenz organischer Verbindungen (Vandenhoeck und Ruprecht, Göttingen, 1951)Google Scholar
  46. 46.
    G.R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford University Press, New York, 1986)Google Scholar
  47. 47.
    F. Ammer, A. Penzkofer, P. Weidner, Chem. Phys. 192, 325 (1995)CrossRefADSGoogle Scholar
  48. 48.
    A. Penzkofer, W. Falkenstein, W. Kaiser, Chem. Phys. Lett. 44, 82 (1976)CrossRefADSGoogle Scholar
  49. 49.
    F. Graf, A. Penzkofer, Opt. Quantum Electron. 17, 53 (1989)CrossRefGoogle Scholar
  50. 50.
    W. Holzer, H. Gratz, T. Schmitt, A. Penzkofer, A. Costela, I. García-Moreno, R. Sastre, F.J. Duarte, Chem. Phys. 256, 125 (2000)CrossRefGoogle Scholar
  51. 51.
    K.-S. Kang, W.N. Sisk, M.Y.A. Raja, F. Farahi, J. Photochem. Photobiol. A 121, 133 (1999)CrossRefGoogle Scholar
  52. 52.
    E.W. Washburn (ed.), International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw Hill, New York, 1930)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • T. Susdorf
    • 1
  • D. del Agua
    • 1
  • A. Tyagi
    • 1
  • A. Penzkofer
    • 1
    Email author
  • O. García
    • 2
  • R. Sastre
    • 2
  • A. Costela
    • 3
  • I. García-Moreno
    • 3
  1. 1.Institut II – Experimentelle und Angewandte PhysikUniversität RegensburgRegensburgGermany
  2. 2.Instituto de Ciencia y Tecnología de Polímeros, CSICMadridSpain
  3. 3.Instituto de Química Física “Rocasolano”, CSICMadridSpain

Personalised recommendations