Advertisement

Applied Physics B

, Volume 85, Issue 4, pp 591–596 | Cite as

Dispersion of electrogyration in sillenite crystals

  • N.C. Deliolanis
  • E.D. Vanidhis
  • N.A. Vainos
Article

Abstract

In this paper we report on the dispersion of the electrogyration of the sillenite crystals Bi12SiO20, Bi12GeO20, and Bi12TiO20 over the visible spectrum. We measure the electrogyration coefficient from the rotation of the polarization plane of the transmitted beam due to the externally applied electric field. Both light transmission and electric field direction are parallel to the [111] crystallographic direction in which the influence of the electrooptic effect is diminished. In all cases the electrogyratory coefficient is found to be between 0.5–3.75×10-13 m/V and has the same dispersion pattern like optical activity and refractive index.

Keywords

Optical Activity Scheelite Polarization Plane Transmitted Beam Visible Spec 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Günter, J. Huignard (Eds.), Photorefractive Materials and their Applications, I and II, Vol. 61, Topics in Applied Physics, (Springer-Verlag, Berlin, 1988)Google Scholar
  2. 2.
    P. Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley Series in Pure and Applied Optics (Wiley, New York, 1993)Google Scholar
  3. 3.
    L. Solymar, D.J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, Oxford, 1996)Google Scholar
  4. 4.
    I.S. Zheludev, Sov. Phys. Cryst. 9, 418 (1965)MathSciNetGoogle Scholar
  5. 5.
    Y.I. Sirotin, M.P. Shaskolskaya, Fundamentals of Crystal Physics (Mir, Moskow, 1982)Google Scholar
  6. 6.
    W. Kaminsky, Rep. Prog. Phys. 63, 1575 (2000)CrossRefADSGoogle Scholar
  7. 7.
    O.G. Vlokh, Ferroelectrics 75, 119 (1987)Google Scholar
  8. 8.
    O.G. Vlokh, Ukr. J. Phys. Opt. 2, 53 (2001)Google Scholar
  9. 9.
    P.V. Lenzo, E.G. Spencer, A.A. Ballman, Appl. Opt. 5, 1688 (1966)CrossRefADSGoogle Scholar
  10. 10.
    P.V. Lenzo, E.G. Spencer, A.A. Ballman, Phys. Rev. Lett. 19, 641 (1967)CrossRefADSGoogle Scholar
  11. 11.
    G.F. Moore, P.V. Lenzo, E.G. Spencer, A.A. Ballman, J. Appl. Phys. 40, 2361 (1969)CrossRefADSGoogle Scholar
  12. 12.
    A. Miller, Phys. Rev. B 8, 5902 (1973)CrossRefADSGoogle Scholar
  13. 13.
    O.G. Vlokh, A.V. Zarik, Ukr. Fiz. Zh. 22, 1032 (1977)ADSGoogle Scholar
  14. 14.
    A.J. Fox, T.M. Bruton, Appl. Phys. Lett. 27, 360 (1976)CrossRefADSGoogle Scholar
  15. 15.
    V.V. Kutsaenko, V.T. Potapov, JETP Lett. 43, 142 (1986)ADSGoogle Scholar
  16. 16.
    F. Vachss, L. Hesselink, Opt. Commun. 62, 159 (1987)CrossRefADSGoogle Scholar
  17. 17.
    J.P. Wilde, L. Hesselink, S.W. McCahon, M.B. Klein, D. Rytz, B.-A. Wechsler, J. Appl. Phys. 67, 2245 (1990)CrossRefADSGoogle Scholar
  18. 18.
    K. Nakagawa, N. Kajita, J. Chen, T. Minemoto, J. Appl. Phys. 69, 954 (1991)CrossRefADSGoogle Scholar
  19. 19.
    E. Anastassakis, Appl. Phys. Lett. 21, 212 (1972)CrossRefADSGoogle Scholar
  20. 20.
    T.J. Tayag, T.E. Batchman, J.J. Sluss, Appl. Opt. 31, 625 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    N.C. Deliolanis, I.M. Kourmoulis, G. Asimellis, A.G. Apostolidis, E.D. Vanidhis, N.A. Vainos, J. Appl. Phys. 97, 023531 (2005)CrossRefADSGoogle Scholar
  22. 22.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960)zbMATHGoogle Scholar
  23. 23.
    V.M. Agranovich, V.L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Springer, Berlin, 1984)Google Scholar
  24. 24.
    A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984)Google Scholar
  25. 25.
    J.F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, 1957)zbMATHGoogle Scholar
  26. 26.
    T.A. Maldonado, T.K. Gaylord, Appl. Opt. 28, 2075 (1989)ADSGoogle Scholar
  27. 27.
    M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1959)zbMATHGoogle Scholar
  28. 28.
    R.M.A. Azzam, N.M. Bashra, Ellipsometry and Polarized Light (North Holland, Amsterdam, 1977)Google Scholar
  29. 29.
    D.G. Papazoglou, A.G. Apostolodis, E.D. Vanidhis, Appl. Phys. B 65, 499 (1997)CrossRefADSGoogle Scholar
  30. 30.
    V. Marinova, M. Veleva, D. Petrova, I.M. Kourmoulis, D.G. Papazoglou, A.G. Apostolodis, E.D. Vanidhis, N.C. Deliolanis, J. Appl. Phys. 89, 2286 (2001)CrossRefGoogle Scholar
  31. 31.
    H. Vogt, K. Buse, H. Hesse, E. Krätzig, R.R. Garcia, J. Appl. Phys. 90, 3167 (2001)CrossRefADSGoogle Scholar
  32. 32.
    Y. Okano, H. Wada, T. Fukuda, S. Miyazawa, Japan J. Appl. Phys. Part 2 30, L1307 (1991)CrossRefGoogle Scholar
  33. 33.
    I.V. Stasyuk, S. Kotsur, Phys. Stat. Solidi B 130, 103 (1985)Google Scholar
  34. 34.
    I.V. Stasyuk, S.S. Kotsur, Phys. Stat. Solidi B 117, 557 (1983)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Physics – Solid State Physics SectionAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Materials ScienceUniversity of PatrasPatrasGreece
  3. 3.Theoretical and Physical Chemistry Institute (TPCI)National Hellenic Research Foundation (NHRF)AthensGreece

Personalised recommendations