Applied Physics B

, Volume 85, Issue 1, pp 7–10 | Cite as

Electrically actuated elastomers for electro–optical modulators

  • N. Galler
  • H. Ditlbacher
  • B. Steinberger
  • A. Hohenau
  • M. Dansachmüller
  • F. Camacho-Gonzales
  • S. Bauer
  • J.R. Krenn
  • A. Leitner
  • F.R. Aussenegg
Rapid communication

Abstract

By using an elastomer as dielectric medium in a parallel plate capacitor, the attractive forces between the differently charged electrodes strongly compress that layer, representing a special type of electrostrictive effect. With an optical interference technique at the metal-insulator-metal layer system we studied the temporal behaviour of this mechanical deformation. We show that the deformation can be enhanced when the capacitor is laterally structured in order to allow the elastomer volume between the electrodes to move laterally, resulting in typical response times below 1 ms. The elastomer together with the metal electrodes is a metal-insulator-metal optical waveguide, whose mode properties can be tuned by electrically controlled mechanical thickness changes, suggesting applications for low-price electro–optical modulators with response speeds comparable to thermo–optical polymer modulators but with much smaller size.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Eldada, L.W. Shacklette, IEEE J. Sel. Top. Quantum Electron. 6, 54 (2000)CrossRefGoogle Scholar
  2. 2.
    G. Grem, G. Leditzky, B. Ullrich, G. Leising, Adv. Mater. 4, 36 (1992)CrossRefGoogle Scholar
  3. 3.
    C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)CrossRefADSGoogle Scholar
  4. 4.
    D.T. Chen, H.R. Fetterman, A. T Chen, W.H. Steier, L.R. Dalton, W.S. Wang, Y.Q. Shi, Appl. Phys. Lett. 70, 3335 (1997)CrossRefADSGoogle Scholar
  5. 5.
    N. Keil, H.H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J.V. Wirth, J. Schneider, J. Bauer, M. Bauer, Appl. Phys. B 73, 469 (2001)ADSGoogle Scholar
  6. 6.
    N. Keil, H.H. Yao, C. Zawadzki, Appl. Phys. B 73, 619 (2001)ADSGoogle Scholar
  7. 7.
    R.E. Pelrine, R.D. Kornbluh, Q. Pei, J.P. Joseph, Science 287, 863 (2000)CrossRefGoogle Scholar
  8. 8.
    R.E. Pelrine, R.D. Kornbluh, J.P. Joseph, Sens. Actuators A 64, 77 (1998)CrossRefGoogle Scholar
  9. 9.
    G. Kofod, M. Paajanen, S. Bauer, Appl. Phys. A, unpublishedGoogle Scholar
  10. 10.
    S. Sakarya, G. Vdovin, P.M. Sarro, Sens. Actuators A 108, 271 (2003)CrossRefGoogle Scholar
  11. 11.
    T.A. Osswald, G. Menges, Materials Science of Polymers for Engineers (Hanser Publishers, Munich Vienna New York, 1995)Google Scholar
  12. 12.
    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford Univ. Press, Oxford, 2003)Google Scholar
  13. 13.
    H. Hillborg, J.F. Ankner, U.W. Gedde, G.D. Smith, H.K. Yasuda, K. Wikström, Polymer 41, 6851 (2000)CrossRefGoogle Scholar
  14. 14.
    P. Bodö, J.-E. Sundgren, Thin Solid Films 136, 147 (1986)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • N. Galler
    • 1
  • H. Ditlbacher
    • 1
  • B. Steinberger
    • 1
  • A. Hohenau
    • 1
  • M. Dansachmüller
    • 2
  • F. Camacho-Gonzales
    • 2
  • S. Bauer
    • 2
  • J.R. Krenn
    • 1
  • A. Leitner
    • 1
  • F.R. Aussenegg
    • 1
  1. 1.Institute of Physics and Erwin Schrödinger Institute for Nanoscale ResearchKarl-Franzens UniversityGrazAustria
  2. 2.Soft Matter PhysicsJohannes-Kepler UniversityLinzAustria

Personalised recommendations