Applied Physics B

, Volume 85, Issue 2–3, pp 235–241 | Cite as

Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm-1

  • J.B. McManus
  • D.D. Nelson
  • S.C. Herndon
  • J.H. Shorter
  • M.S. Zahniser
  • S. Blaser
  • L. Hvozdara
  • A. Muller
  • M. Giovannini
  • J. Faist
Article

Abstract

A quantum cascade laser operating near room temperature with thermoelectric (TE) cooling has been used in both continuous-wave (cw) mode (-9 °C) and pulsed mode (+45 °C) to detect atmospheric nitric oxide using spectral lines at 1900.07 cm-1 (5.3 μm). The totally non-cryogenic spectrometer integrates the laser with a 69-m astigmatic multi-pass cell and a TE-cooled infrared detector to enable operation for extended time periods without operator attention. The pattern of reflections on the astigmatic cell mirrors has been designed to minimize optical interference fringes, which are substantially greater with cw mode than with pulsed operation. The detection method uses direct absorption with rapid- scan sweep integration to achieve sub-second time response. Detection precision for NO in air of 0.5 parts in 109 Hz-1/2 (1σ) is obtained in pulsed mode with an Allan variance minimum corresponding to 0.1 parts in 109 after 30-s averaging time. The precision in cw mode improves to 0.1 parts in 109 Hz-1/2 and 0.03 parts in 109 after 30-s averaging, corresponding to an absorbance per unit path length of 2×10-10 cm-1. The advantages and disadvantages of cw compared to pulsed operation are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Science 295, 301 (2002)CrossRefADSGoogle Scholar
  2. 2.
    S. Blaser, D.A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, J. Faist, Appl. Phys. Lett. 86, 041109 (2005)CrossRefADSGoogle Scholar
  3. 3.
    J.S. Yu, S. Slivken, S.R. Darvish, A. Evans, B. Gokden, M. Razeghi, Appl. Phys. Lett. 87, 041104 (2005)CrossRefADSGoogle Scholar
  4. 4.
    J.S. Yu, A. Evans, S. Slivken, S.R. Darvish, M. Razeghi, IEEE Photon. Technol. Lett. 17, 1154 (2005)CrossRefGoogle Scholar
  5. 5.
    Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, D.A. Yarekha, L. Hvozdara, M. Giovannini, J. Faist, Appl. Phys. B 82, 149 (2006)CrossRefADSGoogle Scholar
  6. 6.
    B.W.M. Moeskops, S.M. Cristescu, F.J.M. Harren, Opt. Lett. 31, 823 (2006)CrossRefADSGoogle Scholar
  7. 7.
    D.D. Nelson Jr., J.B. McManus, S.C. Herndon, J.H. Shorter, M.S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, J. Faist, Opt. Lett. 31, 2012 (2006)CrossRefADSGoogle Scholar
  8. 8.
    R. Jimenez, S. Herndon, J.H. Shorter, D.D. Nelson, J.B. McManus, M.S. Zahnsier, Proc. SPIE 5738, 318 (2005)CrossRefADSGoogle Scholar
  9. 9.
    G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 80, 617 (2005)CrossRefADSGoogle Scholar
  10. 10.
    G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R.F. Curl, F.K. Tittle, Appl. Opt. 43, 6040 (2004)CrossRefADSGoogle Scholar
  11. 11.
    S.C. Herndon, M.S. Zahniser, D.D. Nelson Jr., J.H. Shorter, J.B. McManus, R. Jimenez, C. Warneke, J.A. de Gouw, accepted for publication in J. Geophys. Res. (2006)Google Scholar
  12. 12.
    L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, W.J. Lafferty, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2005)CrossRefADSGoogle Scholar
  13. 13.
    J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, S. Blaser, IEEE J. Quantum Electron. QE-38, 533 (2002)CrossRefADSGoogle Scholar
  14. 14.
    S. Blaser, L. Hvozdara, Y. Bonetti, A. Muller, A. Bächle, S. Jochum, S. Hansmann, T. Aellen, M. Giovannini, J. Faist, Proc. SPIE 6133, 613301 (2006)CrossRefGoogle Scholar
  15. 15.
    D.D. Nelson, J.B. McManus, S. Urbanski, S. Herndon, M.S. Zahniser, Spectrochim. Acta 60, 3325 (2004)CrossRefGoogle Scholar
  16. 16.
    W.J. Riedel, Proc. IEEE 1433, 179 (1991)Google Scholar
  17. 17.
    J.B. McManus, P.L. Kebabian, M.S. Zahniser, Appl. Opt. 34, 3336 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    M. Taubmann, T. Myers, B. Cannon, R. Williams, F. Capasso, C. Gmachl, D.L. Sivco, A.Y. Cho, Opt. Lett. 27, 2164 (2002)CrossRefADSGoogle Scholar
  19. 19.
    R. Maulini, D.A. Yarekha, J.-M. Bulliard, M. Giovannini, J. Faist, E. Gini, Opt. Lett. 30, 2584 (2005)CrossRefADSGoogle Scholar
  20. 20.
    D.W. Allan, Proc. IEEE 54, 221 (1966)CrossRefGoogle Scholar
  21. 21.
    P. Werle, R. Mucke, F. Slemr, Appl. Phys. B 57, 131 (1993)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J.B. McManus
    • 1
  • D.D. Nelson
    • 1
  • S.C. Herndon
    • 1
  • J.H. Shorter
    • 1
  • M.S. Zahniser
    • 1
  • S. Blaser
    • 2
  • L. Hvozdara
    • 2
  • A. Muller
    • 2
  • M. Giovannini
    • 3
  • J. Faist
    • 3
  1. 1.Aerodyne Research, Inc.BillericaUSA
  2. 2.Alpes Lasers SANeuchâtelSwitzerland
  3. 3.Physics InstituteUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations