Advertisement

Applied Physics B

, Volume 86, Issue 3, pp 455–460 | Cite as

The effect of gain and absorption on surface plasmons in metal nanoparticles

  • M.A. Noginov
  • G. Zhu
  • M. Bahoura
  • J. Adegoke
  • C. Small
  • B.A. Ritzo
  • V.P. Drachev
  • V.M. Shalaev
Article

Abstract

The compensation of loss in metal by gain in interfacing dielectric has been demonstrated in a mixture of aggregated silver nanoparticles and rhodamine 6G dye. An increase of the quality factor of surface plasmon (SP) resonance was evidenced by the sixfold enhancement of Rayleigh scattering. The compensation of plasmonic losses with gain enables a host of new applications for metallic nanostructures, including low- or no-loss negative-index metamaterials.

We have also predicted and experimentally observed a suppression of SP resonance in metallic nanoparticles embedded in dielectric host with absorption.

Keywords

Surface Plasmon Resonance Surface Enhance Raman Scattering Surface Plasmon Polariton Rayleigh Scattering Optical Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.H. Ritchie, Surf. Sci. 34, 1 (1973)CrossRefGoogle Scholar
  2. 2.
    M. Moskovits, Rev. Mod. Phys. 57, 783 (1985)CrossRefADSGoogle Scholar
  3. 3.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995)Google Scholar
  4. 4.
    K.-H. Su, Q.-H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz, Nano Lett. 3, 1087 (2003)CrossRefGoogle Scholar
  5. 5.
    M. Quinten, J. Clust. Sci. 10, 319 (1999)CrossRefGoogle Scholar
  6. 6.
    M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg, Opt. Lett. 23, 1331 (1998)ADSGoogle Scholar
  7. 7.
    R.D. Averitt, S.L. Westcott, N.J. Halas, J. Opt. Soc. Am. B 16, 1824 (1999)ADSGoogle Scholar
  8. 8.
    M.L. Brongersma, J.W. Hartman, H.A. Atwater, Phys. Rev. B 62, R16356 (2000)CrossRefADSGoogle Scholar
  9. 9.
    J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, Chem. Phys. 116, 6755 (2002)CrossRefADSGoogle Scholar
  10. 10.
    K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, J. Phys. 14, R597 (2002)Google Scholar
  11. 11.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997)CrossRefADSGoogle Scholar
  12. 12.
    S. Nie, S.R. Emory, Science 275, 1102 (1997)CrossRefGoogle Scholar
  13. 13.
    V.A. Markel, V.M. Shalaev, E.B. Stechel, W. Kim, R.L. Armstrong, Phys. Rev. B 53, 2425 (1996)CrossRefADSGoogle Scholar
  14. 14.
    V.M. Shalaev, E.Y. Poliakov, V.A. Markel, Phys. Rev. B 53, 2437 (1996)CrossRefADSGoogle Scholar
  15. 15.
    V.M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal–Dielectric Films (Springer Tracts in Modern Physics, Springer, Berlin Heidelberg, 2000) Vol. 158Google Scholar
  16. 16.
    L.E. Brus, A. Nitzan, Chemical processing using electromagnetic field enhancement, U.S. Patent No.: 4481091 (21 October, 1983)Google Scholar
  17. 17.
    L. Hutson, Mater. World 13, 18 (2005)Google Scholar
  18. 18.
    T.L. Ferrell, Phys. Rev. B 50, 14738 (1994)CrossRefADSGoogle Scholar
  19. 19.
    E.J. S’anchez, L. Novotny, X.S. Xie, Phys. Rev. Lett. 82, 4014 (1999)CrossRefADSGoogle Scholar
  20. 20.
    M.I. Stockman, Optoelectron. Instrum. Data Proc. 3, 27 (1989)Google Scholar
  21. 21.
    H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, H.J. Lezec, Phys. Rev. B 58, 6779 (1998)CrossRefADSGoogle Scholar
  22. 22.
    D.M. Schaadt, B. Feng, E.T. Yu, Appl. Phys. Lett. 86, 063106 (2005)CrossRefGoogle Scholar
  23. 23.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)CrossRefADSGoogle Scholar
  24. 24.
    V.M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30, 3356 (2005)CrossRefADSGoogle Scholar
  25. 25.
    A.N. Sudarkin, P.A. Demkovich, Sov. Phys. Technol. Phys. 34, 764 (1989)Google Scholar
  26. 26.
    M.P. Nezhad, K. Tetz, Y. Fainman, Opt. Express. 12, 4072 (2004)CrossRefADSGoogle Scholar
  27. 27.
    I. Avrutsky, Phys. Rev. B 70, 155416 (2004)CrossRefADSGoogle Scholar
  28. 28.
    J. Seidel, S. Grafstroem, L. Eng, Phys. Rev. Lett. 94, 177401 (2005)CrossRefADSGoogle Scholar
  29. 29.
    N.M. Lawandy, Appl. Phys. Lett. 85, 5040 (2004)CrossRefADSGoogle Scholar
  30. 30.
    D.J. Bergman, M.I. Stockman, Phys. Rev. Lett. 90, 027402 (2003)CrossRefADSGoogle Scholar
  31. 31.
    A.Y. Smuk, N.M. Lawandy, Appl. Phys. B 84, 125 (2006)CrossRefADSGoogle Scholar
  32. 32.
    V.P. Drachev, A.K. Buin, H. Nakotte, V.M. Shalaev, Nano Lett. 4, 1535 (2004)CrossRefGoogle Scholar
  33. 33.
    P.B. Johnson, R.W. Christy, Phys. Rev. B. 6, 4370 (1972)CrossRefADSGoogle Scholar
  34. 34.
    F. Hide, B.J. Schwartz, M.A. Díaz-García, A.J. Heeger, Synth. Met. 91, 35 (1997)CrossRefGoogle Scholar
  35. 35.
    M.A. Noginov, M. Vondrova, S.N. Williams, M. Bahoura, V.I. Gavrilenko, S.M. Black, V.P. Drachev, V.M. Shalaev, A. Sykes, J. Opt. A 7, S219 (2005)Google Scholar
  36. 36.
    M.A. Noginov, G. Zhu, C. Davison, A.K. Pradhan, K. Zhang, M. Bahoura, M. Codrington, V.P. Drachev, V.M. Shalaev, V.F. Zolin, J. Mod. Opt. 52, 2331 (2005)CrossRefADSGoogle Scholar
  37. 37.
    N.M. Lawandy, Nano-particle plasmonics in active media, In: Proc. SPIE Vol. 5924, Complex mediums VI: Light and Complexity, M.W. McCall, G. Dewar, M.A. Noginov (Eds.), (SPIE, Bellingham, WA, 2005) pp. 59240G/1-13, 2005Google Scholar
  38. 38.
    P. Hildebrant, M. Stockburger, J. Phys. Chem. 88, 5935 (1984)CrossRefGoogle Scholar
  39. 39.
    W. Grochala, A. Kudelski, J. Bukowska, J. Raman Spectrosc. 29, 681 (1998)CrossRefGoogle Scholar
  40. 40.
    R.F. Kubin, A.N. Fletcher, J. Luminesc. 27, 455 (1982)CrossRefGoogle Scholar
  41. 41.
    D. Magde, R. Wong, P.G. Seybold, Photochem. Photobiol. 75, 327 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M.A. Noginov
    • 1
  • G. Zhu
    • 1
  • M. Bahoura
    • 1
  • J. Adegoke
    • 1
  • C. Small
    • 1
  • B.A. Ritzo
    • 2
  • V.P. Drachev
    • 3
  • V.M. Shalaev
    • 3
  1. 1.Center for Materials ResearchNorfolk State UniversityNorfolkUSA
  2. 2.Summer Research Program, Center for Materials ResearchNorfolk State UniversityNorfolkUSA
  3. 3.School of Electrical & Computer Engineering and Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations