Applied Physics B

, Volume 84, Issue 4, pp 673–681

I.C.E.: a transportable atomic inertial sensor for test in microgravity

  • R.A. Nyman
  • G. Varoquaux
  • F. Lienhart
  • D. Chambon
  • S. Boussen
  • J.-F. Clément
  • T. Müller
  • G. Santarelli
  • F. Pereira Dos Santos
  • A. Clairon
  • A. Bresson
  • A. Landragin
  • P. Bouyer
Article

Abstract

We present the construction of an atom interferometer for inertial sensing in microgravity, as part of the I.C.E. (Interférométrie Cohérente pour l’Espace) collaboration. On-board laser systems have been developed based on fibre-optic components, which are insensitive to mechanical vibrations and acoustic noise, have sub-MHz line width, and remain frequency stabilised for weeks at a time. A compact, transportable vacuum system has been built, and used for laser cooling and magneto-optical trapping. We will use a mixture of quantum degenerate gases, bosonic 87Rb and fermionic 40K, in order to find the optimal conditions for precision and sensitivity of inertial measurements. Microgravity will be realised in parabolic flights lasting up to 20 s in an Airbus. We investigate the experimental limits of our apparatus, and show that the factors limiting the sensitivity of a long-interrogation-time atomic inertial sensor are the phase noise in reference-frequency generation for Raman-pulse atomic beam splitters and acceleration fluctuations during free fall.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.R. Bermann (eds.), Atom Interferometry (Academic, Boston MA, 1997)Google Scholar
  2. 2.
    T. Sleator, P.R. Berman, B. Dubetsky, arXiv: physics/9905047 (1999)Google Scholar
  3. 3.
    K. Bongs, K. Sengstock, Rep. Prog. Phys. 67, 907 (2004)CrossRefADSGoogle Scholar
  4. 4.
    Y. Le Coq, J.A. Retter, S. Richard, A. Aspect, P. Bouyer, e-print cond-mat/0501520 (2005)Google Scholar
  5. 5.
    S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan, K. Dieckmann, C.H. Schunck, E.G.M. van Kempen, B.J. Verhaar, W. Ketterle, Science 300, 1723 (2003)CrossRefADSGoogle Scholar
  6. 6.
    M.W. Zwierlein, Z. Hadzibabic, S. Gupta, W. Ketterle, Phys. Rev. Lett. 91, 250404 (2004)CrossRefGoogle Scholar
  7. 7.
    C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)CrossRefADSGoogle Scholar
  8. 8.
    G. Ferrari, M. Inguscio, W. Jastrzebski, G. Modugno, G. Roati, Phys. Rev. Lett. 89, 053202 (2002)CrossRefADSGoogle Scholar
  9. 9.
    F. Ferlaino, C. D’Errico, G. Roati, M. Zaccanti, M. Inguscio, G. Modugno, Phys. Rev. A 73, 040702 (2006)CrossRefADSGoogle Scholar
  10. 10.
    A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard, W. Ketterle, Science 301, 1513 (2003)CrossRefADSGoogle Scholar
  11. 11.
    H. Schmaljohann, M. Erhard, J. Kronjäger, K. Sengstock, K. Bongs, Appl. Phys. B 79, 1001 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Natural-abundance dispensers are available from SAES Getters. We are interested in the isotopes 87Rb and 40K, which are respectively 28% and 0.012% naturally abundant. We will be investing in isotopically enriched 40K (about 5%) dispensers in the near futureGoogle Scholar
  13. 13.
    R.A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, P. Bouyer, Rev. Sci. Instrum. 77, 033105 (2006)CrossRefADSGoogle Scholar
  14. 14.
    A.S. Arnold, J.S. Wilson, M.G. Boshier, Rev. Sci. Instrum. 69, 1236 (1998)CrossRefADSGoogle Scholar
  15. 15.
    C.E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991)CrossRefADSGoogle Scholar
  16. 16.
    V. Mahal, A. Arie, M.A. Arbore, M.M. Fejer, Opt. Lett. 21, 1217 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    R.J. Thompson, M. Tu, D.C. Aveline, N. Lundblad, L. Maleki, Opt. Express 11, 1709 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    J. Dingjan, B. Darquié, J. Beugnon, M.P.A. Jones, S. Bergamini, G. Messin, A. Browaeys, P. Grangier, Appl. Phys. B 82, 47 (2006)CrossRefADSGoogle Scholar
  19. 19.
    K. Dieckmann, R.J.C. Spreeuw, M. Wiedemüller, J.T.M. Walraven, Phys. Rev. A 58, 3891 (1998)CrossRefADSGoogle Scholar
  20. 20.
    C. Ospelkaus, S. Ospelkaus, K. Sengstock, K. Bongs, Phys. Rev. Lett. 96, 020401 (2006)CrossRefADSGoogle Scholar
  21. 21.
    Our current measurements suggest E8–E9 atoms in the cloud. Loading to nearly the maximum atom number takes less than 5 sGoogle Scholar
  22. 22.
    T. Kinoshita, T.R. Wenger, D.S. Weiss, Phys. Rev. A 71, 01162(R) (2005)CrossRefGoogle Scholar
  23. 23.
    M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181 (1991)CrossRefADSGoogle Scholar
  24. 24.
    C.J. Bordé, in Laser Spectroscopy X, ed. by M. Ducloy, E. Giacobino, G. Camy (World Scientific, Singapore 1991), p. 239Google Scholar
  25. 25.
    C. Antoine, C.J. Bordé, J. Opt. B 5, 199 (2003)ADSGoogle Scholar
  26. 26.
    G.J. Dick, Local oscillator induced instabilities. In Proc. Nineteenth Annual Precise Time and Time Interval Applications Planning Meet., 1987, pp. 133–147Google Scholar
  27. 27.
    P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Leduc, A. Landragin, e-print physics/0510197 (2005)Google Scholar
  28. 28.
    P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K.T. Therkildsen, A. Clairon, A. Landragin, e-print physics/0510261 (2005)Google Scholar
  29. 29.
    A. Mann, C. Sheng, A. Luiten, IEEE Trans. Instrum. Meas. 50, 519 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • R.A. Nyman
    • 1
  • G. Varoquaux
    • 1
  • F. Lienhart
    • 2
  • D. Chambon
    • 3
  • S. Boussen
    • 2
  • J.-F. Clément
    • 1
  • T. Müller
    • 4
  • G. Santarelli
    • 3
  • F. Pereira Dos Santos
    • 3
  • A. Clairon
    • 3
  • A. Bresson
    • 2
  • A. Landragin
    • 3
  • P. Bouyer
    • 1
  1. 1.Laboratoire Charles Fabry de l’Institut d’OptiqueCentre National de la Recherche Scientifique et Université Paris Sud 11Orsay CedexFrance
  2. 2.Chemin de la HunièreOffice National d’Etude et de Recherches AérospatialesPalaiseauFrance
  3. 3.LNE-SYRTE, UMR8630Observatoire de ParisParisFrance
  4. 4.Institute for Quantum OpticsUniversity of HannoverHannoverGermany

Personalised recommendations