Advertisement

Applied Physics B

, Volume 85, Issue 1, pp 163–167 | Cite as

Measurement of tropospheric O3, SO2 and aerosol from a volcanic emission event using new multi-wavelength differential-absorption lidar techniques

  • N. Cao
  • S. Li
  • T. Fukuchi
  • T. Fujii
  • R.L. Collins
  • Z. Wang
  • Z. Chen
Article

Abstract

We present measurements of tropospheric O3, SO2 and aerosol from a volcanic emission event using new multi-wavelength differential absorption lidar (DIAL) techniques that enable us to remove the mutual effects between O3 and SO2 from the raw measurements. The aerosol extinction coefficient is retrieved directly from the lidar return signal at the “off” wavelength and is used to estimate aerosol effects on O3 and SO2measurements. Null error, statistical error, and absorption cross-section error are also analyzed. The O3 and SO2 concentrations at height between 1000 m and 2000 m for a volcanic event on September 10, 2001 were about 20 ppb and 10–35 ppb, respectively, with an error less than 10 ppb. The measured SO2 concentration was much higher than the normal SO2 background value (∼1 ppb) in the troposphere. We also measured O3 concentrations from 13 December 2000 to 06 January 2001 and investigated O3 diurnal variation during a 24-hour period on November 24, 2000. A high O3 concentration of about 250 ppb was observed in late December 2000.

Keywords

Lidar Differential Optical Absorption Spectroscopy Aerosol Extinction Volcanic Emission Wavelength Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Parayannis, G. Ancellet, J. Pelon, G. Megie, Appl. Opt. 29, 467 (1990)ADSGoogle Scholar
  2. 2.
    K.A. Fredriksson, H.M. Hertz, Appl. Opt. 23, 1403 (1984)ADSGoogle Scholar
  3. 3.
    H. Hayami, Y. Ichikwa, Water Air Soil Pollut. 85, 2015 (1995)CrossRefGoogle Scholar
  4. 4.
    Y. Ichikawa, S. Fujita, Water Air Soil Pollut. 85, 1927 (1995)CrossRefGoogle Scholar
  5. 5.
    P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano, Appl. Phys. B 67, 419 (1998)CrossRefADSGoogle Scholar
  6. 6.
    P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, L. Pantani, Opt. Laser Eng. 37, 267 (2002)CrossRefGoogle Scholar
  7. 7.
    H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci, J. Geophys. Res. 99, 18827 (1994)CrossRefADSGoogle Scholar
  8. 8.
    G. Ancellet, G. Megie, J. Pelon, R. Capitini, D. Renaut, Atmosph. Environ. 21, 2215 (1987)CrossRefGoogle Scholar
  9. 9.
    N. Cao, T. Fukuchi, T. Fujii, R.L. Collins, S. Li, Z. Wang, Z. Chen, Appl. Phys. B 82, 141 (2006)CrossRefADSGoogle Scholar
  10. 10.
    http://www.aber.ac.uk/ozone/UFAM/o3x-sec.htmlGoogle Scholar
  11. 11.
    T. Fukuchi, N. Goto, T. Fujii, K. Nemoto, Opt. Eng. 38, 141 (1999)CrossRefADSGoogle Scholar
  12. 12.
    T. Fukuchi, T. Nayuki, N. Cao, T. Fujii, K. Nemoto, H. Mori, N. Takeuchi, Opt. Eng. 42, 98 (2003)CrossRefADSGoogle Scholar
  13. 13.
    J.D. Klett, Appl. Opt. 25, 2462 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, Appl. Opt. 40, 949 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • N. Cao
    • 1
  • S. Li
    • 3
  • T. Fukuchi
    • 2
  • T. Fujii
    • 2
  • R.L. Collins
    • 3
  • Z. Wang
    • 1
  • Z. Chen
    • 1
  1. 1.Department of Electronic EngineeringNanjing University of Information Science & TechnologyNanjing CityP.R. China
  2. 2.Electrical Physics Department, Komae Research LaboratoryCentral Research Institute of the Electric Power IndustryTokyoJapan
  3. 3.Geophysical InstituteUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations