Applied Physics B

, Volume 85, Issue 4, pp 525–529 | Cite as

The generation of intense, transform-limited laser pulses with tunable duration from 6 to 30 fs in a differentially pumped hollow fibre

  • J.S. RobinsonEmail author
  • C.A. Haworth
  • H. Teng
  • R.A. Smith
  • J.P. Marangos
  • J.W.G. Tisch


We have investigated experimentally the energy transmission and spectral broadening of 30-fs, 700-μJ laser pulses in a neon-filled, 250-μm inner diameter hollow fibre. We implement a differentially pumped fibre, where a vacuum is maintained at the fibre entrance, and compare this to a statically filled fibre. We obtain significantly higher transmission and increased spectral broadening in the differentially pumped case due to a reduction of ionisation defocusing at the fibre entrance. This arrangement provides a method for the generation of near-transform- limited pulses with smoothly varying pulse duration whilst maintaining constant pulse energy, by simple adjustment of the gas pressure. Compression of ∼450-μJ pulses from the differentially pumped fibre to a duration of 6.5 fs has been achieved for pulses with spectra spanning 650–900 nm, by use of negatively dispersive chirped mirrors.


Input Pulse Chirp Pulse Spectral Phase Intense Laser Pulse Limited Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Nisoli, S.D. Silvestri, O. Svelto, Appl. Phys. Lett. 60, 2793 (1996)CrossRefADSGoogle Scholar
  2. 2.
    S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, C. Spielmann, F. Krausz, K. Ferencz, Opt. Lett. 22, 1562 (1997)ADSGoogle Scholar
  3. 3.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)CrossRefADSGoogle Scholar
  4. 4.
    P. Agostini, L. DiMauro, Rep. Prog. Phys. 67, 813 (2004)CrossRefADSGoogle Scholar
  5. 5.
    S. Baker, J.S. Robinson, C.A. Haworth, H. Teng, R.A. Smith, C.C. Chirila, M. Lein, J.W.G. Tisch, J.P. Marangos, Science 312, 424 (2006)CrossRefADSGoogle Scholar
  6. 6.
    K. Yamane, T. Kito, R. Morita, M. Yamashita, in Conf. Lasers and Electro-Optics (CLEO), 2004, p. 1045Google Scholar
  7. 7.
    A. Suda, M. Hatayama, K. Nagasaka, K. Midorikawa, Appl. Phys. Lett. 86, 111 (2005)CrossRefGoogle Scholar
  8. 8.
    G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic, San Diego, CA, 2001), Chap. 4Google Scholar
  9. 9.
    M. Nurhuda, A. Suda, K. Midorikawa, M. Hatayama, K. Nagasaka, J. Opt. Soc. Am. B 20, 2002 (2003)ADSGoogle Scholar
  10. 10.
    M. Nurhuda, A. Suda, K. Midorikawa, H. Budiono, J. Opt. Soc. Am. B 22, 1757 (2005)CrossRefADSGoogle Scholar
  11. 11.
    J.H. Sung, J.Y. Park, T. Imran, Y.S. Lee, C.H. Nam, Appl. Phys. B 82, 5 (2005)CrossRefADSGoogle Scholar
  12. 12.
    K. DeLong, R. Trebino, J. Hunter, W. White, J. Opt. Soc. Am. B 11, 2206 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    L.E. Chipperfield, L.N. Gaier, P.L. Knight, J.P. Marangos, J.W.G. Tisch, J. Mod. Opt. 52, 243 (2005)zbMATHADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J.S. Robinson
    • 1
    Email author
  • C.A. Haworth
    • 1
  • H. Teng
    • 1
  • R.A. Smith
    • 1
  • J.P. Marangos
    • 1
  • J.W.G. Tisch
    • 1
  1. 1.Blackett LaboratoryImperial College LondonLondonUK

Personalised recommendations