Applied Physics B

, Volume 85, Issue 1, pp 97–100

Quasi-phase matching in LiNbO3 using nonlinear coefficients in the XY plane



We report quasi-phase-matched second-harmonic generation in periodically poled lithium niobate (PPLN), where both fundamental and second-harmonic waves are ordinary waves. It provides a lower-limit value for d22 of 1.1 pm/V. The measured temperature and wavelength bandwidth of the second-harmonic signal are in good agreement with the theoretical predictions. Since the d22=dYYY nonlinear coefficient of LiNbO3 changes its sign as a result of electric field periodic poling along the Z direction, we deduce that all tensor components of the second-order susceptibility χ(2) of trigonal 3m crystals are reversed, thereby expanding the quasi-phase-matching possibilities in these crystals. Furthermore, it enables the realization of all-optical processes based on the nonlinear coefficients in the XY plane, such as all-optical polarization rotation in PPLN, as well as multipartite entanglement experiments based on simultaneous phase matching using different elements of χ(2) in a single LiNbO3 crystal.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.G.R. Broderick, R.T. Bratfalean, T.M. Monro, D.J. Richardson, C. Martijn de Sterke, J. Opt. Soc. Am. B 19, 2263 (2002)CrossRefADSGoogle Scholar
  2. 2.
    Y. Chen, R. Wu, X. Zeng, Y. Xia, X. Chen, Opt. Laser. Technol. 38, 19 (2006)CrossRefADSGoogle Scholar
  3. 3.
    S. Saltiel, Y. Deyanova, Opt. Lett. 24, 1296 (1999)CrossRefADSGoogle Scholar
  4. 4.
    R.C. Pooser, O. Pfister, Opt. Lett. 30, 2635 (2005)CrossRefADSGoogle Scholar
  5. 5.
    P.A. Franken, J.F. Ward, Rev. Mod. Phys. 35, 23 (1963)MATHCrossRefADSGoogle Scholar
  6. 6.
    Y.Q. Lu, Z.L. Wan, Q. Wang, Y.X. Xi, N.B. Ming, Appl. Phys. Lett. 77, 3719 (2000)CrossRefADSGoogle Scholar
  7. 7.
    G.A. Magel, M.M. Fejer, R.L. Byer, Appl. Phys. Lett. 56, 108 (1990)CrossRefADSGoogle Scholar
  8. 8.
    G.D. Boyd, D.A. Kleinman, J. Appl. Opt. 39, 3597 (1968)ADSGoogle Scholar
  9. 9.
    V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, Berlin Heidelberg, 1991)Google Scholar
  10. 10.
    G.J. Edwards, M. Lawrence, Opt. Quantum Electron. 16, 373 (1984)CrossRefGoogle Scholar
  11. 11.
    D.E. Zelmon, D.L. Small, D. Jundt, J. Opt. Soc. Am. B 14, 3319 (1997)CrossRefADSGoogle Scholar
  12. 12.
    R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic, San Diego, CA, 2003)Google Scholar
  13. 13.
    A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.P. Rousseau, J.P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, S.M. Saltiel, Opt. Lett. 30, 920 (2005)CrossRefADSGoogle Scholar
  14. 14.
    A. Cotel, A. Jullien, N. Forget, O. Albert, G. Chériaux, C.L. Blanc, Appl. Phys. B 83, 7(2006)CrossRefADSGoogle Scholar
  15. 15.
    G.I. Petrov, O. Albert, N. Minkovski, J. Etchepare, S.M. Saltiel, J. Opt. Soc. Am. B 19, 268 (2002)CrossRefADSGoogle Scholar
  16. 16.
    N. Minkovski, G.I. Petrov, S.M. Saltiel, O. Albert, J. Etchepare, J. Opt. Soc. Am. B 21, 1659 (2004)CrossRefADSGoogle Scholar
  17. 17.
    R. DeSalvo, M. Sheik-Bahae, A.A. Said, D.J. Hagan, E.W. Van Stryland, Opt. Lett. 18, 194 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Physical Electronics, School of Electrical EngineeringTel-Aviv UniversityTel-AvivIsrael
  2. 2.Faculty of PhysicsUniversity of SofiaSofiaBulgaria

Personalised recommendations