Applied Physics B

, Volume 84, Issue 4, pp 663–671 | Cite as

Bose–Einstein condensates in microgravity

  • A. Vogel
  • M. Schmidt
  • K. Sengstock
  • K. Bongs
  • W. Lewoczko
  • T. Schuldt
  • A. Peters
  • T. Van Zoest
  • W. Ertmer
  • E. Rasel
  • T. Steinmetz
  • J. Reichel
  • T. Könemann
  • W. Brinkmann
  • E. Göklü
  • C. Lämmerzahl
  • H.J. Dittus
  • G. Nandi
  • W.P. Schleich
  • R. Walser
Article

Abstract

We report the current status of our cooperative effort to realize a 87Rb Bose–Einstein condensate in microgravity. Targeting the long-term goal of studying cold quantum gases on a space platform, we currently focus on the implementation of an experiment at the ZARM drop tower in Bremen. Fulfilling the technical requirements for operation in this facility, the complete experimental setup will fit in a volume of less than 1 m3 with a total mass below 150 kg and a total power consumption of the order of 625 W. The individual parts of the setup, in particular the ultra-compact laser system as a critical component, are presented. In addition, we discuss a first demonstration of the mechanical and frequency control stability of the laser modules. On the theoretical side, we outline the non-relativistic description of a freely falling many-particle system in the rotating frame of the Earth. In particular, we show that the time evolution of a harmonically trapped, collisionally interacting degenerate gas of bosons or fermions is as simple in an accelerated, rotating frame of reference as in an inertial frame. By adopting a co-moving generalized Galilean frame, we can eliminate inertial forces and torques. This leads to important simplifications for numerical simulation of the experiment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.P. Anderson, Phys. Rev. A 63, 023404 (2001)CrossRefADSGoogle Scholar
  2. 2.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)CrossRefADSGoogle Scholar
  3. 3.
    K. Bongs, K. Sengstock, Rep. Prog. Phys. 67, 907 (2004)CrossRefADSGoogle Scholar
  4. 4.
    I. Bialynicki-Birula, Z. Bialynicka-Birula, Phys. Rev. A 65, 063606 (2002)CrossRefADSGoogle Scholar
  5. 5.
    S. Bize, P. Laurent, C.R. Physique 5, 829 (2004)CrossRefADSGoogle Scholar
  6. 6.
    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)CrossRefADSGoogle Scholar
  7. 7.
    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 79, 1170 (1997)CrossRefADSGoogle Scholar
  8. 8.
    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)CrossRefADSGoogle Scholar
  9. 9.
    J.F. Dobson, Phys. Rev. Lett. 73, 2244 (1994)CrossRefADSGoogle Scholar
  10. 10.
    A. Fetter, J. Walecka, Quantum Theory of Many-particle Systems (McGraw-Hill, Boston, MA, 1971)Google Scholar
  11. 11.
    W. Greiner, Mechanik, Teil 2, 5th edn. (Verlag Harri Deutsch, Thun, 1989)Google Scholar
  12. 12.
    W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel, Nature 413, 498 (2001)CrossRefADSGoogle Scholar
  13. 13.
    W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, in Proc. International School of Physics – Enrico Fermi, ed. by M. Inguscio, S. Stringari, C.E. Wieman (IOS Press, Amsterdam, 1999), pp. 67–176Google Scholar
  14. 14.
    W. Kohn, Phys. Rev. 123, 1242 (1961)CrossRefADSMATHGoogle Scholar
  15. 15.
    S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, C. Zimmermann, Laser Phys. Lett. 2, 71 (2005)CrossRefGoogle Scholar
  16. 16.
    A.E. Leanhardt, Science 301, 1513 (2003)CrossRefADSGoogle Scholar
  17. 17.
    K.G. Libbrecht, J.L. Hall, Rev. Sci. Instrum. 64, 2133 (1993)CrossRefADSGoogle Scholar
  18. 18.
    G. Nandi, R. Walser, E. Kajari, W.P. Schleich, unpublishedGoogle Scholar
  19. 19.
    H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, C. Zimmermann, Phys. Rev. Lett. 87, 230401 (2001)CrossRefADSGoogle Scholar
  20. 20.
    T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, G.M. Tino, Eur. Phys. J. D 22, 279 (2003)ADSGoogle Scholar
  21. 21.
    J. Reichel, W. Hänsel, T.W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999)CrossRefADSGoogle Scholar
  22. 22.
    G. Schmid, Phys. Rev. A 15, 1459 (1977)CrossRefADSGoogle Scholar
  23. 23.
    J.H. Shirley, Opt. Lett. 7, 537 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    G. Wasik, W. Gawlik, J. Zachorowski, W. Zawadzki, Appl. Phys. B 75, 613 (2002)CrossRefADSGoogle Scholar
  25. 25.
    A.C. Wilson, J.C. Sharpe, C.R. McKenzie, P.J. Manson, D.M. Warrington, Appl. Opt. 37, 4871 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. Vogel
    • 1
  • M. Schmidt
    • 1
  • K. Sengstock
    • 1
  • K. Bongs
    • 1
  • W. Lewoczko
    • 2
  • T. Schuldt
    • 2
  • A. Peters
    • 2
  • T. Van Zoest
    • 3
  • W. Ertmer
    • 3
  • E. Rasel
    • 3
  • T. Steinmetz
    • 4
  • J. Reichel
    • 4
  • T. Könemann
    • 5
  • W. Brinkmann
    • 5
  • E. Göklü
    • 5
  • C. Lämmerzahl
    • 5
  • H.J. Dittus
    • 5
  • G. Nandi
    • 6
  • W.P. Schleich
    • 6
  • R. Walser
    • 6
  1. 1.Institut für Laser-PhysikUniversität HamburgHamburgGermany
  2. 2.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Institut für QuantenoptikUniversität HannoverHannoverGermany
  4. 4.Laboratoire Kastler Brossel de l’E.N.S.Paris Cedex 05France
  5. 5.ZARM Universität BremenBremenGermany
  6. 6.Abteilung QuantenphysikUniversität UlmUlmGermany

Personalised recommendations