Applied Physics B

, Volume 85, Issue 2–3, pp 279–284 | Cite as

Photoacoustic detection of NO2 and N2O using quantum cascade lasers

  • J.P. Lima
  • H. Vargas
  • A. Miklós
  • M. Angelmahr
  • P. Hess
Article

Abstract

Pulsed quantum cascade lasers (QCLs) with 6.2-μm and 8-μm wavelengths and a differential photoacoustic (PA) detector were used to measure concentrations of NO2 and N2O in the sub-ppmv range at ambient pressure. The QCL temperatures were tuned between -40 °C and 30 °C. Good agreement was found between measured PA vibrational spectra and simulated HITRAN spectra of both nitrogen oxides. The PA signals showed a linear dependence on the concentration in the investigated 0.5–50 ppmv region in both cases. The results for N2O are compared with a PA measurement of N2O at 2.9 μm using a grazing-incidence optical parametric oscillator.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D.L. Sivco, A.M. Sergent, A.Y. Cho, IEEE J. Quantum Electron. QE-38, 569 (2002)CrossRefADSGoogle Scholar
  2. 2.
    B.A. Paldus, T.G. Spence, R.N. Zare, J. Oomens, F.J.M. Harren, D.H. Parker, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Opt. Lett. 24, 178 (1999)CrossRefADSGoogle Scholar
  3. 3.
    C.R. Webster, G.J. Flesch, D.C. Scott, J.E. Swanson, R.D. May, W.S. Woodward, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Appl. Opt. 40, 321 (2001)CrossRefADSGoogle Scholar
  4. 4.
    D. Hofstetter, M. Beck, J. Faist, M. Nägele, M.W. Sigrist, Opt. Lett. 26, 887 (2001)CrossRefADSGoogle Scholar
  5. 5.
    D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser, Appl. Phys. B 75, 343 (2002)CrossRefADSGoogle Scholar
  6. 6.
    S. Schilt, L. Thévenaz, E. Courtois, P.A. Robert, Spectrochim. Acta A 58, 2533 (2002)CrossRefGoogle Scholar
  7. 7.
    A.A. Kosterev, F.K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, S. Wehe, M.G. Allen, Appl. Opt. 41, 1169 (2002)CrossRefADSGoogle Scholar
  8. 8.
    A.A. Kosterev, R.F. Curl, F.K. Tittel, M. Rochat, M. Beck, D. Hofstetter, J. Faist, Appl. Phys. B 75, 351 (2002)CrossRefADSGoogle Scholar
  9. 9.
    T. Beyer, M. Braun, A. Lambrecht, J. Appl. Phys. 93, 3158 (2003)CrossRefADSGoogle Scholar
  10. 10.
    A. Elia, P.M. Lugaràl, C. Giancaspro, Opt. Lett. 30, 988 (2005)CrossRefADSGoogle Scholar
  11. 11.
    S. Barbieri, J.-P. Pellaux, E. Studemann, D. Rosset, Rev. Sci. Instrum. 73, 2458 (2002)CrossRefADSGoogle Scholar
  12. 12.
    M. Horstjann, Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, Appl. Phys. B 79, 799 (2004)CrossRefADSGoogle Scholar
  13. 13.
    A.A. Kosterev, Y.A. Bakhirkin, F.K. Tittel, Appl. Phys. B 80, 133 (2005)CrossRefADSGoogle Scholar
  14. 14.
    A.K. Kosterev, F.K. Tittel, IEEE J. Quantum Electron. QE-38, 582 (2002)CrossRefADSGoogle Scholar
  15. 15.
    Y. Maeda, K. Aoki, M. Munemori, Anal. Chem. 52, 307 (1980)CrossRefGoogle Scholar
  16. 16.
    A. Wellburn, Air Pollution and Climate Change, 2nd edn. (Longman, Harlow, UK, 1994)Google Scholar
  17. 17.
    O. Polzat, G.H. Atkinson, Anal. Chem. 54, 1485 (1982)CrossRefGoogle Scholar
  18. 18.
    V. Slezak, G. Santiago, A.L. Peuriot, Opt. Laser. Eng. 40, 33 (2003)CrossRefGoogle Scholar
  19. 19.
    G. Zhang, L. Zhang, X. Han, Chin. Opt. Lett. 3, 119 (2005)ADSGoogle Scholar
  20. 20.
    J. Wojtas, A. Czyzewski, T. Stacewicz, Z. Bielecki, J. Mikolajczyk, Proc. SPIE 5954, 1 (2005)Google Scholar
  21. 21.
    P.L. Kebabian, S.C. Herndon, A. Freedman, Anal. Chem. 77, 724 (2005)CrossRefGoogle Scholar
  22. 22.
    J.H. Shorter, D.D. Nelson, M.S. Zahniser, M.E. Parrish, D.R. Crawford, D.L. Gee, Spectrochim. Acta A 63, 994 (2006)CrossRefGoogle Scholar
  23. 23.
    G. D’Amato, G. Liccardi, M. D’Amato, M. Cazzola, Monaldi Arch. Chest Dis. 57, 161 (2002)Google Scholar
  24. 24.
    J.A. Bernstein, N. Alexis, C. Barnes, I.L. Bernstein, J.A. Bernstein, A. Nel, D. Peden, D. Diaz-Sanchez, S.M. Tarlo, P.B. Williams, J. Allergy Clin. Immunol. 114, 1116 (2004)CrossRefGoogle Scholar
  25. 25.
    L. Erdinger, M. Dürr, K.-A. Höpker, Environ. Sci. Pollut. Res. 12, 10 (2005)CrossRefGoogle Scholar
  26. 26.
    J. Kaiser, Science 294, 1268 (2001)CrossRefGoogle Scholar
  27. 27.
    M.W. Sigrist (ed.), Air Monitoring by Spectroscopic Techniques (Wiley, New York, 1994)Google Scholar
  28. 28.
    M. Schmidt, H. Glatzel-Mattheier, H. Sartorius, D.E. Worthy, I. Levin, J. Geophys. Res. 106, 5507 (2001)CrossRefADSGoogle Scholar
  29. 29.
    M. Gomes da Silva, A. Miklós, A. Falkenroth, P. Hess, Appl. Phys. B 82, 329 (2006)CrossRefADSGoogle Scholar
  30. 30.
    M. Gomes da Silva, H. Vargas, A. Miklós, P. Hess, Appl. Phys. B 78, 1613 (2004)CrossRefGoogle Scholar
  31. 31.
    D. Weidmann, F.K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, S. Blaser, Appl. Phys. B 79, 907 (2004)CrossRefADSGoogle Scholar
  32. 32.
    www.hitran.comGoogle Scholar
  33. 33.
    A. Schmohl, A. Miklós, P. Hess, Appl. Opt. 41, 1815 (2002)CrossRefADSGoogle Scholar
  34. 34.
    A. Miklós, P. Hess, Z. Bozoki, Rev. Sci. Instrum. 72, 1937 (2001)CrossRefADSGoogle Scholar
  35. 35.
    D. Costopoulos, A. Miklós, P. Hess, Appl. Phys. B 75, 385 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J.P. Lima
    • 1
  • H. Vargas
    • 1
  • A. Miklós
    • 2
  • M. Angelmahr
    • 2
  • P. Hess
    • 2
  1. 1.Laboratório de Ciências Físicas – CCTUniversidade Estadual do Norte Fluminense Darcy RibeiroRio de JaneiroBrazil
  2. 2.Institute of Physical ChemistryUniversity of HeidelbergHeidelbergGermany

Personalised recommendations