Applied Physics B

, Volume 84, Issue 1–2, pp 275–279 | Cite as

A nano/micro ‘meso’ scale self-calibrating integrated optical wavelength and intensity meter

  • H.J. Caulfield
  • A. ZavalinEmail author


Wavelength-division multiplexing has become the dominant approach to utilizing the massive bandwidth of optical fibers and integrated optics, including those based on a photonic crystal approach and recent nanotechnology achievements. For tunable sources and tunable receivers, it is desirable to measure the wavelength accurately and quickly. Unfortunately, current wavelength-measurement devices are not integrated and not fast enough to support 1 Gbit/s and higher requirements of the modern communication lines. We show here how to make an integrated optical system that results in an intensity-independent wavelength determination and a wavelength-independent intensity determination at ultra-short pulse duration or higher than ∼1-GHz bandwidth. The two output beams from a Mach–Zehnder interferometer, tuned to 3 dB at each output at the beginning of the wavelength-measurement range, provide all of the needed information. We show how a simple fast wavelength meter can be built into a silicon – or other – optical chip. It employs fuzzy metrology using both outputs of an integrated interferometer.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Han, L. Liu, E. Forsberg, Opt. Commun. 259, 690 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    H.J. Caulfield, T. Hirschfeld, A.D. Williams, Opt. Eng. 15, 368 (1976)ADSCrossRefGoogle Scholar
  3. 3.
    N. Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya, Appl. Phys. A 25, 311 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    R. Castell, W. Demtröder, A. Fischer, R. Kullmer, H. Weickenmeier, K. Wickert, Appl. Phys. B 38, 1 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    B. Faust, L. Klynning, Appl. Opt. 30, 5254 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    J.J. Snyder, Sov. J. Quantum Electron. 8, 959 (1978)ADSCrossRefGoogle Scholar
  7. 7.
    ILX Lightwave, Inc., web site, specifications, Scholar
  8. 8.
    H.J. Caulfield, J. Ludman, J. Shamir, in Fuzzy Systems Theory, Vol. 2 (Academic, New York, 1999), p. 747Google Scholar
  9. 9.
    H.J. Caulfield, IEEE Trans. Fuzzy Syst. 4, 206 (1996)CrossRefGoogle Scholar
  10. 10.
    L.A. Zadeh, R.R. Yager, Fuzzy Sets and Applications, selected papers by L.A. Zadeh (Wiley, New York, 1987)Google Scholar
  11. 11.
    M.H. Shih, W.J. Kim, W. Kuang, J.R. Cao, H. Yukawa, S.J. Choi, J.D. O’Brien, P.D. Dapkus, W.K. Marshall, Appl. Phys. Lett. 84, 460 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Sugimoto, H. Nakamura, Y. Tanaka, N. Ikeda, K. Asakawa, Opt. Express 13, 96 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    R.W. Boyd, J.E. Heebner, N.N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G.W. Wicks, J. Mod. Opt. 50, 2543 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Huang, G.T. Paloczi, A. Yariv, C. Zhang, L.R. Dalton, J. Phys. Chem. B 108, 8606 (2004)CrossRefGoogle Scholar
  15. 15.
    F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domenguez, A. Abad, A. Monoya, L.M. Lechuga, Nanotechnology 14, 907 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    A. Yacoubian, IEEE Photon. Technol. Lett. 14, 618 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    B.J. Luff, J.S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, N. Fabricius, J. Lightwave Technol. 16, 583 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    T. Erdogan, T.A. Strasser, M.A. Milbrodt, E.J. Laskowski, C.H. Henry, G.E. Kohnke, Appl. Opt. 36, 7838 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    K. Jinguji, N. Takato, A. Sugita, M. Kawachi, Electron. Lett. 26, 1326 (1990)CrossRefGoogle Scholar
  20. 20.
    P. Benech, D. Persegol, F.S. Andre, J. Phys. D Appl. Phys. 23, 617 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    A. Martinez, A. Griol, P. Sanchis, J. Marti, Opt. Lett. 28, 405 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Q. Wang, S. He, J. Lightwave Technol. 23, 1284 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    ILX Lightwave, Inc., web site, Scholar
  24. 24.
    R. Chaux, Appl. Phys. B 58, 63 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    J. Ishikawa, N. Ito, K. Tanaka, Appl. Opt. 25, 639 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    T. Dimmick, J. Weidner, Appl. Opt. 36, 1898 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Conservative Optical Logic Devices (COLD) ProgramFisk UniversityNashvilleUSA

Personalised recommendations