Advertisement

Applied Physics B

, Volume 84, Issue 1–2, pp 83–87 | Cite as

Improvement of characterization accuracy of the nonlinear photonic crystals using finite elements-iterative method

  • I.V. Guryev
  • O.V. Shulika
  • I.A. SukhoivanovEmail author
  • O.V. Mashoshina
Article

Abstract

We investigate nonlinear one- and two-dimensional photonic crystals by applying a finite element-iterative method. Numerical results show the essential influence of nonlinear elements embedded into a quarter-wave stack and the sharp photonic crystal waveguide bend on the spectral characteristics of these structures. We compare our results with those obtained in [21] from the discrete equation method for the case of a sharp waveguide bend. The comparison shows that neglecting the nonuniform field distribution inside the embedded nonlinear elements leads to overestimation of the waveguide bend transmissivity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Olukotun, L. Hammond, ACM Queue 7, 26 (2005)CrossRefGoogle Scholar
  2. 2.
    K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001)Google Scholar
  3. 3.
    N. Yokouchi, A.J. Danner, K.D. Choquette, IEEE J. Sel. Top. Quantum Electron. 9, 1439 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Akahane, T. Asanol, B.-S. Song, S. Noda, Int. Quantum Electron. Conference, (IQEC) 882 (2004)Google Scholar
  5. 5.
    A. Lavrinenko, P.I. Borel, L.H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, Opt. Express 12, 234 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    S. Fan, P.R. Villeneuve, J.D. Joannopoulos, H.A. Haus, Phys. Rev. Lett. 80, 960 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    A.D. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, Opt. Express 11, 230 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    S. Kim, I. Park, H. Lim, Proc. SPIE 5597, 129 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    S. Mingaleev, Y. Kivshar, Opt. Photon. News 13, 48 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    S.F. Mingaleev, M. Schillinger, D. Hermann, K. Bush, Opt. Lett. 29, 2858 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    X. Liu, H. Zhang, M. Zhang, Opt. Express 10, 83 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    O. Axelsson, Iterative Solution Methods (Cambridge University Press, Cambridge, 1994)CrossRefGoogle Scholar
  13. 13.
    R.H. Gallagher, Finite Element Analysis Fundamentals (Prentice-Hall, NJ, 1975)Google Scholar
  14. 14.
    N. Matuschek, F.X. Kärtner, U. Keller, IEEE J. Quantum Electron. QE-33, 295 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995)Google Scholar
  16. 16.
    A. Mekis, J.C. Chen, I. Kurland, P.R. Villeneuve, J.D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    M. Imada, S. Noda, A. Chutinan, M. Mochizuki, T. Tanaka, J. Lightwave Technol. 20, 873 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    A.V. Yulin, D.V. Skryabin, P.S.J. Russell, Opt. Express 13, 3529 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    M. Scalora, J.R. Dowling, C.M. Bowden, M.J. Bloemer, J. Appl. Phys. 76, 2023 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    G. Genty M. Lehtonen H. Ludvigsen, Appl. Phys. B 81, 357 (2005)ADSGoogle Scholar
  21. 21.
    S.F. Mingaleev, Y.S. Kivshar, J. Opt. Soc. Am. B 19, 2241 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • I.V. Guryev
    • 1
  • O.V. Shulika
    • 1
  • I.A. Sukhoivanov
    • 1
    • 2
    Email author
  • O.V. Mashoshina
    • 1
  1. 1.Lab. “Photonics”National University of Radio ElectronicsKharkivUkraine
  2. 2.FIMEEUniversity of GuanajuatoSalamancaMexico

Personalised recommendations