Advertisement

Applied Physics B

, Volume 84, Issue 3, pp 523–527 | Cite as

Accurate determination of the atomic number density in dense Cs vapors by absorption measurements of Cs2 triplet bands

  • C. VadlaEmail author
  • V. Horvatic
  • K. Niemax
Article

Abstract

The spectra of Cs metal vapor have been experimentally investigated by spatially resolved absorption in overheated cesium vapor generated in a heat pipe oven. The reduced absorption coefficients of the triplet satellite bands at 875.5 nm and the diffuse band between 705 nm and 720 nm were found to be independent of temperature in the range between 600 K and 1000 K. The absorption data of these molecular features can be successfully used for very simple and accurate Cs number density determination in the range from about 5×1017 cm-3 to 5×1018 cm-3.

Keywords

Cesium Optical Depth Heat Pipe Diffuse Band Cesium Vapor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Thorne, U. Litzén, S. Johansson, Spectrophysics (Springer, Berlin, 1999)Google Scholar
  2. 2.
    V. Horvatic, R. Beuc, M. Movre, C. Vadla, J. Phys. B 26, 3679 (1993)CrossRefADSGoogle Scholar
  3. 3.
    D.E. Johnson, J.G. Eden, J. Opt. Soc. Am. B 2, 721 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    C. Vadla, R. Beuc, V. Horvatic, M. Movre, A. Quentmeier, K. Niemax, Eur. Phys. J. D 37, 37 (2006)CrossRefADSGoogle Scholar
  5. 5.
    V. Horvatic, M. Movre, C. Vadla, J. Phys. B 32, 4957 (1999)CrossRefADSGoogle Scholar
  6. 6.
    A.N. Nesmeyanov, Vapor Pressure of the Chemical Elements (Elsevier, Amsterdam, London, New York, 1963)Google Scholar
  7. 7.
    J. Szudy, W.E. Baylis, Phys. Rep. 266, 127 (1996)CrossRefGoogle Scholar
  8. 8.
    D.L. Drummond, L.A. Schlie, J. Chem. Phys. 65, 2116 (1976)CrossRefADSGoogle Scholar
  9. 9.
    R. Gupta, W. Happer, J. Wagner, E. Wennmyr, J. Chem. Phys. 68, 799 (1978)CrossRefADSGoogle Scholar
  10. 10.
    R. Beuc, H. Skenderovic, T. Ban, D. Veza, G. Pichler, W. Meyer, Eur. Phys. J. D 15, 209 (2001)CrossRefADSGoogle Scholar
  11. 11.
    C.M. Dion, O. Dulieu, D. Comparat, W. de Souza Melo, N. Vanhaecke, P. Pillet, R. Beuc, S. Milosevic, G. Pichler, Eur. Phys. J. D 18, 365 (2002)ADSGoogle Scholar
  12. 12.
    U. Diemer, J. Gress, W. Demtröder, Chem. Phys. Lett. 178, 330 (1991)CrossRefADSGoogle Scholar
  13. 13.
    H. Heinke, J. Lawrenz, K. Niemax, K.-H. Weber, Z. Phys. A 312, 329 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of PhysicsZagrebCroatia
  2. 2.ISAS – Institute for Analytical SciencesDortmundGermany

Personalised recommendations