Applied Physics B

, Volume 84, Issue 3, pp 379–383 | Cite as

Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy

Rapid communication


We present a novel multifocal multiphoton microscope that is based on a sampling imaging technique using a microlens array, a prism for two-dimensionalspectral dispersion, and a specially designed streak camera to provide simultaneous time- and spectrum-resolved fluorescence microscopy. We split the near-infrared light of a mode-locked titanium:sapphire femtosecond laser into an array of beams that are transformed into an array of high-aperture foci at the sample. A time- and spectrum-resolved image of 3×3 foci on the sample can be obtained with a snapshot. By translating the sample stage laterally and axially and implementing a dedicated image reconstruction algorithm in the control system of the instrument, we demonstrate the acquisition of a five-dimensional data set combining lifetime and spectral resolutions in biological fluorescence imaging.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Denk, J.H. Strickler, W.W. Webb, Science 248, 73 (1990)CrossRefADSGoogle Scholar
  2. 2.
    Y. Hiraoka, T. Shimi, T. Haraguchi, Cell Struct. Funct. 27, 367 (2002)CrossRefGoogle Scholar
  3. 3.
    A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A.K. El-Naggar, J.L. Palmer, G. Clayman, M.F. Mitchell, R. Richards-Kortum, Arch. Otolaryngol. 124, 1251 (1998)Google Scholar
  4. 4.
    D.K. Bird, K.W. Eliceiri, C.-H. Fan,J.G. White, Appl. Opt. 43, 5173 (2004)CrossRefADSGoogle Scholar
  5. 5.
    W. Becker, A. Bergmann, C. Biskup, T. Zimmer, N. Klöcker, K. Benndorf, Proc. SPIE 4620, 79 (2002)CrossRefADSGoogle Scholar
  6. 6.
    J. Siegel, D.S. Elson, S.E.D. Webb,D. Parsons-Karavassilis, S. Lévêque-Fort,M.J. Cole, M.J. Lever, P.M.W. French, Opt. Lett. 26, 1338 (2001)CrossRefADSGoogle Scholar
  7. 7.
    G. Vereb, E. Jares-Erijman, P.R. Selvin, T.M. Jovin, Biophys. J. 74, 2210 (1998)CrossRefADSGoogle Scholar
  8. 8.
    S. Lévêque-Fort, M.P. Fontaine-Aupart, G. Roger, P. Georges, Opt. Lett. 29, 2884 (2004)CrossRefADSGoogle Scholar
  9. 9.
    M. Straub, S.W. Hell, Appl. Phys. Lett. 73, 1769 (1998)CrossRefADSGoogle Scholar
  10. 10.
    J. Qu, L. Liu, D. Chen, Z. Lin, G. Xu, B. Guo, H. Niu, Opt. Lett. 31, 368 (2006)CrossRefADSGoogle Scholar
  11. 11.
    R.V. Krishnan, H. Saitoh, H. Terada,V.E. Centonze, B. Herman, Rev. Sci. Instrum. 74, 2714 (2003)CrossRefADSGoogle Scholar
  12. 12.
    A.H. Buist, M. Müller, J. Squier, G.J. Brakenhoff, J. Microsc. 192, 217 (1998)CrossRefGoogle Scholar
  13. 13.
    J. Bewersdorf, R. Pick, S.W. Hell, Opt. Lett. 23, 655 (1998)CrossRefADSGoogle Scholar
  14. 14.
    B. Richards, E. Wolf, Proc. R. Soc. London A 253, 358 (1959)ADSMATHCrossRefGoogle Scholar
  15. 15.
    W.R. Zipfel, R.M. Williams, W.W. Webb, Nat. Biotechnol. 21, 1369 (2003)CrossRefGoogle Scholar
  16. 16.
    L. Liu, J. Qu, Z. Lin, D. Chen, T. Hu, B. Guo, H. Niu, Acta Opt. Sin. 26, 373 (2006)Google Scholar
  17. 17.
    L. Liu, J. Qu, Z. Lin, D. Chen, G. Xu, T. Hu, B. Guo, H. Niu, Acta Phys. Sin. (2006), unpublishedGoogle Scholar
  18. 18.
    L. Sacconi, E. Froner, R. Antolini, M.R. Taghizadeh, A. Choudhury, F.S. Pavone, Opt. Lett. 22, 1918 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Key Laboratory of Optoelectronic Devices and Systems, Ministry of EducationInstitute of Optoelectronics, Shenzhen UniversityShenzhenP.R. China

Personalised recommendations