Applied Physics B

, Volume 85, Issue 2–3, pp 199–206

Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs

  • S.E. Bisson
  • T.J. Kulp
  • O. Levi
  • J.S. Harris
  • M.M. Fejer


The combination of continuous-wave difference frequency generation based on quasi-phase-matched (QPM) gallium arsenide with cavity ring-down spectroscopy is explored for use in spectroscopic and chemical sensing applications. The advent of QPM materials based on orientation-patterned GaAs (OP-GaAs) offers a significant advantage over traditional ferroelectric QPM materials of extended wavelength coverage into the spectroscopically important 8–12 μm region. In this work, the outputs from two tunable, external cavity diode lasers covering the 1.3 μm and 1.5 μm telecom bands were amplified then mixed in an orientation-patterned GaAs crystal, producing several microwatts of tunable radiation in the 7–9 μm region. We also evaluate the use of a low-power DFG source for use in cavity ring-down spectroscopy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.T. Sorokina, K.L. Vodopyanov, Solid State Mid-Infrared Laser Sources, (Springer-Verlag, Topics in Applied Physics, Berlin, Heidelberg, New York, 2003)Google Scholar
  2. 2.
    T.J. Kulp, S.E. Bisson, R.P. Bambha, T.A. Reichardt, U.B. Goers, K.W. Aniolek, D.A.V. Kliner, B.A. Richman, K.M. Armstrong, R. Sommers, R. Schmitt, P.E. Powers, O. Levi, T. Pinguet, M.M. Fejer, J.P. Kplow, L. Goldberg, T.G. Mcrae, Appl. Phys. B 75, 317 (2002)CrossRefADSGoogle Scholar
  3. 3.
    M. Sieter, M. Sigrist, Infrared Phys. Technol. 41, 259 (2000)CrossRefADSGoogle Scholar
  4. 4.
    K.P. Petrov, R.F. Curl, F.K. Tittel, Appl. Phys. B 66, 531 (1998)CrossRefADSGoogle Scholar
  5. 5.
    S.E. Bisson, K.M. Armstrong, T.J. Kulp, M. Hartings, Appl. Opt. 40, 4904 (2001)CrossRefGoogle Scholar
  6. 6.
    B.A. Richman, K.W. Aniolek, T.J. Kulp, S.E. Bisson, J. Opt. Soc. Am. 17, 1233 (2000)CrossRefADSGoogle Scholar
  7. 7.
    K.W. Aniolek, T.J. Kulp, B.A. Richman, S.E. Bisson, Chem. Phys. Lett. 302, 555 (1999)CrossRefADSGoogle Scholar
  8. 8.
    L.A. Eyres, P.J. Tourreau, T.J. Pinguet, C.B. Ebert, J.S. Harris, M.M. Fejer, L. Becouarn, B. Gerard, E. Lallier, Appl. Phys. Lett. 79, 904 (2001)CrossRefADSGoogle Scholar
  9. 9.
    C. Gmachl, F. Capsso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001)CrossRefADSGoogle Scholar
  10. 10.
    G. Wysocki, R.F. Curl, F.K. Tittel, R. Maulini, J.M. Bulliard, J. Faist, Appl. Phys. B 81, 769 (2005)CrossRefADSGoogle Scholar
  11. 11.
    D. Richter, D.G. Lancaster, R.F. Curl, W. Neu, F.K. Tittel, Appl. Phys. B 67, 347 (1998)CrossRefADSGoogle Scholar
  12. 12.
    D. Richter, D.G. Lancaster, F.K. Tittel, Appl. Opt. 39, 4444 (2000)CrossRefADSGoogle Scholar
  13. 13.
    F.K. Tittel, D. Richter, A. Fried, in Solid-State Mid-Infrared Laser Sources, ed. by I.T. Sorokina, K.L. Vodopyanov (Springer-Verlag, Topics in Applied Physics, Berlin, Heidelberg, New York, 2003)Google Scholar
  14. 14.
    W. Chen, D. Boucher, F.K. Tittel, Recent Res. Dev. Appl. Phys. 5, 27 (2002)Google Scholar
  15. 15.
    O. Levi, T.J. Pinguet, T. Skauli, L.A. Eyres, K.R. Parameswaran, J.S. Harris Jr., M.M. Fejer, T.J. Kulp, S.E. Bisson, B. Gerard, E. Lallier, L. Becouarn, Opt. Lett. 27, 2091 (2002)CrossRefADSGoogle Scholar
  16. 16.
    O. Levi, T. Pinguet, T. Skauli, L.A. Eyres, L. Scaccbarozzi, M.M. Fejer, J.S. Harris, T.J. Kulp, S. Bisson, B. Gerard, L. Becouarn, E. Lallier, in OSA Trends in Optics and Photonics (TOPS), Conference on Lasers and Electro Optics (CLEO) (Optical Society of America, Washington DC, 2001), Vol. 56Google Scholar
  17. 17.
    Y. Nishida, M. Yamada, T. Kanamori, K. Kobayashi, J. Temmyo, S. Sudo, Y. Ohishi, IEEE J. Quantum Electron. QE-34, 1332 (1998)CrossRefADSGoogle Scholar
  18. 18.
    P. Urquhart, IEEE J. Quantum Electron. QE-28, 1962 (1992)CrossRefADSGoogle Scholar
  19. 19.
    D.G. Cooper, J.L. Dexter, R.D. Esman, IEEE J. Sel. Top. Quantum Electron. 1, 14 (1995)CrossRefGoogle Scholar
  20. 20.
    G.D. Boyd, D.A. Kleinman, J. Appl. Phys. 39, 3597 (1968)CrossRefADSGoogle Scholar
  21. 21.
    A.N. Pikthin, A.D. Yaskov, Sov. Phys. Semicond. 12, 622 (1978)Google Scholar
  22. 22.
    K.J. Schulz, W.R. Simpson, Chem. Phys. Lett. 297, 523 (1998)CrossRefADSGoogle Scholar
  23. 23.
    SNLO code available at Scholar
  24. 24.
    D.Z. Anderson, Appl. Opt. 23, 2944 (1984)ADSGoogle Scholar
  25. 25.
    N.M. Sampas, D. Anderson, Appl. Opt. 29, 394 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    B.A. Paldus, C.C. Harb, T.G. Spence, B. Wilke, J. Xie, J.S. Harris, R.N. Zare, J. Appl. Phys. 83 3991 (1998)Google Scholar
  27. 27.
    B.A. Paldus, A.A. Kachanov, Can. J. Phys. 83, 975 (2005)CrossRefADSGoogle Scholar
  28. 28.
    A.M. Parks, R.E. Lindley, A.J. Orr-Ewing, Anal. Chem. 76, 7329 (2004)CrossRefGoogle Scholar
  29. 29.
    M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, Appl. Phys. B 75, 367 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • S.E. Bisson
    • 1
  • T.J. Kulp
    • 1
  • O. Levi
    • 2
  • J.S. Harris
    • 2
  • M.M. Fejer
    • 2
  1. 1.Sandia National LaboratoriesLivermoreUSA
  2. 2.E.L. Ginzton LaboratoryStanford UniversityStanfordUSA

Personalised recommendations