Applied Physics B

, 85:391

Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser

  • J.H. Miller
  • Y.A. Bakhirkin
  • T. Ajtai
  • F.K. Tittel
  • C.J. Hill
  • R.Q. Yang
Article

Abstract

A continuous-wave, mid-infrared, distributed feedback, interband cascade laser was used to detect and quantify formaldehyde (H2CO) using off-axis, integrated cavity output spectroscopy in gas mixtures containing ≈1–25 parts in 106 by volume (ppmV) of H2CO. Analysis of the spectral measurements indicates that a H2CO concentration of 150 parts in 109 by volume (ppbV) would produce a spectrum with a signal to noise ratio of 3 for a data acquisition time of 3 s. This is a relevant sensitivity level for formaldehyde monitoring of indoor air, occupational settings, and on board spacecraft in long duration missions in particular as the detection sensitivity improves with the square root of the data acquisition time.

References

  1. 1.
    B.P. Wert, M. Trainer, A. Fried, T.B. Ryerson, B. Henry, W. Potter, W.M. Angevine, E. Atlas, S.G. Donnelly, F.C. Fehsenfeld, G.J. Frost, P.D. Goldan, A. Hansel, J.S. Holloway, G. Hubler, W.C. Kuster, D.K. Nicks, J.A. Neuman, D.D. Parrish, S. Schauffler, J. Stutz, D.T. Sueper, C. Wiedinmyer, A. Wisthaler, J. Geophys. Res. 108, ACH8/1 (2003)Google Scholar
  2. 2.
    OSHA Standards – 29 CFR 1910.1048 (2006)Google Scholar
  3. 3.
    R.E. Crossgrove, Spacecraft Maximum Allowible Concentrations for Selected Airborne Contaminants (National Academy of Sciences, 1994–2000), Vol. 1–4Google Scholar
  4. 4.
    J.R. Hopkins, T. Still, S. Al-Haider, I.R. Fisher, A.C. Lewis, P.W. Seakins, Atmos. Environ. 37, 2557 (2003)CrossRefGoogle Scholar
  5. 5.
    Y. Suzuki, N. Nakano, K. Suzuki, Environ. Sci. Technol. 37, 5695 (2003)CrossRefGoogle Scholar
  6. 6.
    D. Richter, P. Weibring, Appl. Phys. B 82, 479 (2006)CrossRefADSGoogle Scholar
  7. 7.
    P. Weibring, D. Richter, A. Fried, J.G. Walega, C. Dyroff, Appl. Phys. B (2006), unpublished, DOI: 10.1007/s00340-006-2300-4Google Scholar
  8. 8.
    D.G. Lancaster, A. Fried, B. Wert, B. Henry, F.K. Tittel, J. Appl. Opt. 39, 4436 (2000)CrossRefADSGoogle Scholar
  9. 9.
    H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, M. Mürtz, Appl. Phys. B 75, 311 (2002)CrossRefADSGoogle Scholar
  10. 10.
    F. Müller, A. Popp, F. Kühnemann, S. Schiller, Opt. Express 11, 2820 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    M.M.J.W. van Herpen, S.E. Bisson, A.K.Y. Ngai, F.J.M. Harren, Appl. Phys. B 78, 281 (2004)CrossRefADSGoogle Scholar
  12. 12.
    P. Wert, A. Fried, S. Rauenbuehler, J. Walega, B. Henry, J. Geophys. Res. 108, ACH1/1 (2003)Google Scholar
  13. 13.
    R.Q. Yang, C.J. Hill, B.H. Yang, Appl. Phys. Lett. 87, 151109 (2005)CrossRefADSGoogle Scholar
  14. 14.
    R.Q. Yang, C.J. Hill, Y. Qiu, Mater. Res. Soc. Symp. Proc. 891, 0891-EE01-06 (2006)Google Scholar
  15. 15.
    R.Q. Yang, C.J. Hill, B.H. Yang, C.M. Wong, R.E. Muller, P.M. Echternach, Appl. Phys. Lett. 84, 3699 (2004)CrossRefADSGoogle Scholar
  16. 16.
    D. Romanini, Ann. Phys. (Paris) 20, 665 (1995)ADSGoogle Scholar
  17. 17.
    D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997)CrossRefADSGoogle Scholar
  18. 18.
    B.A. Paldus, J.S. Harris Jr., J. Martin, J. Xie, R.N. Zare, J. Appl. Phys. 82, 3199 (1997)CrossRefADSGoogle Scholar
  19. 19.
    J.H. Miller, A. R Awtry, M. E Moses, A.D. Jewell, E.L. Wilson, Proc. Combust. Inst. 29, 2203 (2002)CrossRefGoogle Scholar
  20. 20.
    A. O’Keefe, J.J. Scherer, J.B. Paul, Chem. Phys. Lett. 307, 343 (1999)CrossRefGoogle Scholar
  21. 21.
    Y.A. Bakhirkin, A.A. Kosterev, C. Roller, R.F. Curl, F.K. Tittel, Appl. Opt. 43, 2257 (2004)CrossRefADSGoogle Scholar
  22. 22.
    J.B. Paul, L. Lapson, J.G. Anderson, Appl. Opt. 40, 4904 (2001)CrossRefADSGoogle Scholar
  23. 23.
    Y.A. Bakhirkin, A.A. Kosterev, R. Curl, F.K. Tittel, D.A. Yarekha, L. Hvozdara, M. Giovannini, J. Faist, Appl. Phys. B 82, 149 (2006)CrossRefADSGoogle Scholar
  24. 24.
    M. Horstjann, Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, C.M. Wong, C.J. Hill, R.Q. Yang, Appl. Phys. B 79, 799 (2004)CrossRefADSGoogle Scholar
  25. 25.
    L.S. Rothman, A. Barbe, D. Chris Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.Y. Mandin, S.T. Massie, V. Nemtchinov, D. A Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, J. Quantum Spectrosc. Radiat. Transf. 82, 5 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J.H. Miller
    • 1
  • Y.A. Bakhirkin
    • 2
  • T. Ajtai
    • 2
  • F.K. Tittel
    • 2
  • C.J. Hill
    • 3
  • R.Q. Yang
    • 3
  1. 1.Department of ChemistryThe George Washington UniversityWashingtonUSA
  2. 2.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations