Applied Physics B

, Volume 85, Issue 2–3, pp 219–222 | Cite as

Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm

  • P. Maddaloni
  • P. Malara
  • G. Gagliardi
  • P. De Natale
Article

Abstract

We report a portable, widely tunable, mW-power mid-infrared spectrometer based on difference-frequency generation in a periodically poled lithium-niobate crystal, realized in a compact and robust design. The analytical performance for real-time monitoring of natural-abundance trace gases in ambient air is evaluated, pointing out the possibility of field applications. In a direct-absorption scheme, a minimum detectable concentration of 3 ppb Hz-1/2 is demonstrated around 3.3 μm for methane at atmospheric pressure. The sensitivity is further improved by using a two-tone frequency modulation spectroscopy technique that provides an enhancement of a factor of 100 in the signal-to-noise ratio, thus yielding a minimum absorption coefficient of 5.3×10-9 cm-1 Hz-1/2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Keppler, J.T.G. Hamilton, M. Brass, T. Röckmann, Nature 439, 187 (2006)CrossRefADSGoogle Scholar
  2. 2.
    G.J. German, D.J. Rokestraw, Science 264, 1750 (1994)CrossRefADSGoogle Scholar
  3. 3.
    E.C. Richard, K.K. Kelly, R.H. Winkler, R. Wilson, T.L. Thompson, R.J. McLaughlin, A.L. Schmeltekopf, A.F. Tuck, Appl. Phys. B 75, 183 (2002)CrossRefADSGoogle Scholar
  4. 4.
    L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, W. Urban, Appl. Phys. B 72, 1 (2001)CrossRefGoogle Scholar
  5. 5.
    H. Dahnke, D. Kleine, P. Hering, M. Mürtz, Appl. Phys. B 72, 971 (2001)ADSGoogle Scholar
  6. 6.
    M. Gomes Da Silva, A. Miklos, A. Falkenroth, P. Hess, Appl. Phys. B 82, 329 (2006)CrossRefADSGoogle Scholar
  7. 7.
    F.K. Tittel, D. Richter, A. Fried, in Solid-State Mid-Infrared Laser Sources (Top. Appl. Phys. 89), ed. by I.T. Sorokina, K.L. Vodopyanov (Springer, Berlin, 2003), p. 445Google Scholar
  8. 8.
    M. Ebrahimzadeh, in Solid-State Mid-Infrared Laser Sources (Top. Appl. Phys. 89), ed. by I.T. Sorokina, K.L. Vodopyanov (Springer, Berlin, 2003), p. 179Google Scholar
  9. 9.
    J. Fayst, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1194)CrossRefGoogle Scholar
  10. 10.
    D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stockel, Chem. Phys. Lett. 264, 316 (1997)CrossRefADSGoogle Scholar
  11. 11.
    G. von Basum, D. Halmer, P. Hering, M. Mürtz, S. Schiller, F. Müller, A. Popp, F. Kühnemann, Opt. Lett. 29, 797 (2004)CrossRefADSGoogle Scholar
  12. 12.
    G. Gagliardi, L. Gianfrani, Opt. Laser Eng. 37, 509 (2002)CrossRefGoogle Scholar
  13. 13.
    J. Ye, L.-S. Ma, J.L. Hall, J. Opt. Soc. Am. B 15, 6 (1998)CrossRefADSGoogle Scholar
  14. 14.
    D. Halmer, G. von Basum, P. Hering, M. Mürtz, Opt. Lett. 30, 2314 (2005)CrossRefADSGoogle Scholar
  15. 15.
    D.S. Baer, J.B. Paul, M. Gupta, A. O’Keefe, Appl. Phys. B 75, 261 (2002)CrossRefADSGoogle Scholar
  16. 16.
    P. Malara, P. Maddaloni, G. Gagliardi, P. De Natale, Opt. Express 14, 1304 (2006)CrossRefADSGoogle Scholar
  17. 17.
    D.M. Bruce, D.T. Cassidy, Appl. Opt. 29, 1327 (1990)ADSGoogle Scholar
  18. 18.
    J. Henningsen, J. Hald, Appl. Phys. B 76, 441 (2003)CrossRefADSGoogle Scholar
  19. 19.
    T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002)CrossRefADSGoogle Scholar
  20. 20.
    G.C. Bjorklund, Opt. Lett. 5, 15 (1980)ADSGoogle Scholar
  21. 21.
    P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, Appl. Phys. B 49, 99 (1989)CrossRefADSGoogle Scholar
  22. 22.
    J.A. Silver, Appl. Opt. 31, 707 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    P. Werle, Spectrochim. Acta A 54, 197 (1998)CrossRefGoogle Scholar
  24. 24.
    A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, L. Gianfrani, Appl. Phys. B 78, 235 (2004)CrossRefADSGoogle Scholar
  25. 25.
    H. Dahnke, D. Kleine, W. Urban, P. Hering, M. Mürtz, Appl. Phys. B 72, 121 (2001)ADSGoogle Scholar
  26. 26.
    S. Stry, P. Hering, M. Mürtz, Appl. Phys. B 75, 297 (2002)CrossRefADSGoogle Scholar
  27. 27.
    D. Richter, A. Fried, B.P. Wert, J.G. Walega, F.K. Tittel, Appl. Phys. B 75, 281 (2003)CrossRefADSGoogle Scholar
  28. 28.
    R. van Trigt, H.A.J. Meijer, A.E. Sveinbjornsdottir, S.J. Johnsen, E.R.T. Kerstel, Ann. Glaciol. 35, 125 (2002)CrossRefADSGoogle Scholar
  29. 29.
    R. Peeters, G. Berden, A. Apituley, G. Meijer, Appl. Phys. B 71, 231 (2000)CrossRefADSGoogle Scholar
  30. 30.
    P. Maddaloni, G. Gagliardi, P. Malara, P. De Natale, Appl. Phys. B 80, 141 (2005)CrossRefADSGoogle Scholar
  31. 31.
    Harvard Smithsonian Center for Astrophysics, The Hitran Database 2004 [http://www.hitran.com]Google Scholar
  32. 32.
    G.R. Janik, C.B. Carlisle, T.F. Gallagher, J. Opt. Soc. Am. B 3, 1070 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    L.-G. Wang, D.A. Tate, H. Riris, T. Gallagher, J. Opt. Soc. Am. B 6, 87 (1982)Google Scholar
  34. 34.
    C.S. Edwards, G.P. Barwood, P. Gill, B. Schirmer, H. Venzke, A. Melling, Appl. Opt. 38, 4699 (1999)CrossRefADSGoogle Scholar
  35. 35.
    G. Modugno, C. Corsi, M. Gabrysch, F. Marin, M. Inguscio, Appl. Phys. B 67, 289 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • P. Maddaloni
    • 1
  • P. Malara
    • 1
  • G. Gagliardi
    • 1
  • P. De Natale
    • 1
  1. 1.Istituto Nazionale di Ottica Applicata and European Laboratory for Nonlinear Spectroscopy (LENS), Comprensorio ‘A. Olivetti’Consiglio Nazionale delle RicerchePozzuoliItaly

Personalised recommendations