Advertisement

Applied Physics B

, Volume 84, Issue 1–2, pp 149–156 | Cite as

Analysis of optical binding in one dimension

  • V. Karásek
  • K. Dholakia
  • P. ZemánekEmail author
Article

Abstract

The redistribution of light between micro- or nanoobjects placed in counter-propagating laser fields leads to their steady-state spatial configurations. Under appropriate conditions, the objects are spatially separated and form optically bound matter. This is a very exciting phenomenon that is still not fully understood. In this article we present a new theoretical model of how to study this phenomenon, which is based on a coupled dipole method particularly amenable to nanoparticle optical binding. Predictions of this model are compared with experimental data and other theoretical models with satisfactory results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.M. Burns, J.M. Fournier, J.A. Golovchenko, Phys. Rev. Lett. 63, 1233 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    M.M. Burns, J.M. Fournier, J.A. Golovchenko, Science 249, 749 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    S.A. Tatarkova, A.E. Carruthers, K. Dholakia, Phys. Rev. Lett. 89, 283901 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    W. Singer, M. Frick, S. Bernet, M. Ritsch-Marte, J. Opt. Soc. Am. B 20, 1568 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    D. McGloin, A.E. Carruthers, K. Dholakia, E.M. Wright, Phys. Rev. E 69, 021403 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    E.M. Purcell, C.R. Pennypacker, Astrophys. J. 186, 705 (1973)ADSCrossRefGoogle Scholar
  7. 7.
    B. Draine, J.C. Weingartner, Astrophys. J. 470, 551 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    B. Draine, Astrophys. J. 333, 848 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Goodman, B.T. Draine, P.J. Flatau, Opt. Lett. 16, 1198 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    A.G. Hoekstra, M. Frijlink, L.B.F.M. Waters, P.M.A. Sloot, J. Opt. Soc. Am. A 18, 1944 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    B. Draine, J. Goodman, Astrophys. J. 405, 685 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge, 1992)Google Scholar
  14. 14.
    N.K. Metzger, K. Dholakia, E.M. Wright, Phys. Rev. Lett. 96, 068102 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    http://www.st-andrews.ac.uk/˜gfm2/tracker.htmGoogle Scholar
  16. 16.
    M. Ibisate, F. Meseguer, F. Garcia-Santamaria, H. Miguez, C. Lopez, Langmuir 18, 1942 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Scientific InstrumentsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.School of Physics and AstronomyUniversity of St. AndrewsFifeScotland

Personalised recommendations