Advertisement

Applied Physics B

, Volume 84, Issue 1–2, pp 351–355 | Cite as

Second harmonic generation in zinc oxide nanorods

  • S.W. Chan
  • R. Barille
  • J.M. NunziEmail author
  • K.H. Tam
  • Y.H. Leung
  • W.K. Chan
  • A.B. Djurišić
Article

Abstract

Second-order optical nonlinearities of zinc oxide (ZnO) nanorods grown on quartz substrate were determined by optical second harmonic generation (SHG) measurements at 1064 nm fundamental wavelength. The average length of the zinc oxide nanorods ranged from 50 nm to 700 nm. By employing the Maker fringes technique, we obtained the second-order nonlinear optical coefficients d333 and d311. Their magnitudes and ratio are compared with that of zinc oxide thin film fabricated by different techniques. We see variations of the second-order nonlinear optical coefficients with respect to the aspect ratio of the nanorods. This is attributed to local field effects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Cao, J.Y. Xu, D.Z. Zhang, S.H. Chang, S.T. Ho, E.W. Seelig, X. Liu, R.P.H. Chang, Phys. Rev. Lett. 84, 5584 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    E.M. Wong , P.C. Searson, Appl. Phys. Lett. 74, 2939 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13, 113 (2001)CrossRefGoogle Scholar
  4. 4.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    W.U. Huynh, J.J. Dittmer, N. Teclemariam, D.J. Milliron, A.P. Alivisatos, K.W.J. Barnham, Phys. Rev. B 67, 115326 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86, 053114 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nature Mater. 4, 455 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Appl. Phys. Lett. 81, 3648 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    C. Dekker, Phys. Today 52, 22 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    J.C. Johnson, H. Yan, R.D. Schaller, P.B. Peterson, P. Yang, R.J. Saykally, Nano Lett. 2, 279 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, Nano Lett. 5, 1231 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    D. Li, Y.H. Leung, A.B. Djurišić, Z.T. Liu, M.H. Xie, S.L. Shi, S.J. Xu, W.K. Chan, Appl. Phys. Lett. 85, 1601 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    J. Jerphagnon, S.K. Kurtz, Phys. Rev. B 1, 1739 (1970)ADSCrossRefGoogle Scholar
  16. 16.
    P.D. Maker, R.W. Terhune, M. Nisenoff, C.M. Savage, Phys. Rev. 154, 851 (1967)CrossRefGoogle Scholar
  17. 17.
    W.N. Herman, L.M. Hayden, J. Opt. Soc. Am. B 12, 416 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    G. Wang, G.T. Kiehne, G.K.L. Wong, J.B. Ketterson, X. Liu, R.P.H. Chang, Appl. Phys. Lett. 80, 401 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    M.C. Larciprete, D. Passeri, F. Michelotti, S. Paoloni, C. Sibilia, M. Bertolotti, A. Belardini, F. Sarto, F. Somma, S. Lo Mastro, J. Appl. Phys. 97, 023501 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, W. Seeber, Appl. Phys. Lett. 84, 170 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    H. Cao, J.Y. Wu, H.C. Ong, J.Y. Dai, R.P.H. Chang, Appl. Phys. Lett. 73, 572 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    C.Y. Liu, B.P. Zhang, N.T. Binh, Y. Segawa, Opt. Commun. 237, 65 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    J. Jerphagnon, S.K. Kurtz, J. Appl. Phys. 41, 1667 (1970)ADSCrossRefGoogle Scholar
  24. 24.
    X.Q. Zhang, Z.K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, Thin Solid Films 450, 320 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    G. Wang, G.K.L. Wong, J.B. Ketterson, Appl. Opt. 40, 5436 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    F. Michelotti, A. Belardini, M.C. Larciprete, M. Bertolotti, A. Rousseau, A. Ratsimihety, G. Shoer, J. Muller, Appl. Phys. Lett. 83, 4477 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    A. Mitra, R.K. Thareja, Mod. Phys. Lett. B 15, 515 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    B.H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater. 14, 158 (2002)CrossRefGoogle Scholar
  29. 29.
    R.C. Miller, W.A. Nordland, Appl. Phys. Lett. 16, 174 (1970)ADSCrossRefGoogle Scholar
  30. 30.
    M.C. Larciprete, D. Haertle, A. Belardini, A. Bertolotti, F. Sarto, P. Gunter, Appl. Phys. B 82, 431 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, M. Schmidbauer, W. Seeber, Appl. Phys. Lett. 87, 171108 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    X.Q. Zhang, Z.K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, J. Phys.: Condens. Matter 15, 5191 (2003)ADSGoogle Scholar
  33. 33.
    A.-J. Cheng, D. Wang, H.W. Seo, C. Liu, M. Park, Y. Tzeng, Diamond Relat. Mater. 15, 426 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    S.Y. Li, C.Y. Lee, P. Lin, T.Y. Tseng, J. Vac. Sci. Technol. B 24, 147 (2006)CrossRefGoogle Scholar
  35. 35.
    B. Cao, W. Cai, Q. Zhao, D. Yu, Nanotechnology 16, 2567 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    B.F. Levine, Phys. Rev. Lett. 22, 787 (1969)ADSCrossRefGoogle Scholar
  37. 37.
    G. Buinitskaya, L. Kulyuk, V. Mirovitskii, E. Rusu, E. Mishina, N. Sherstyuk, Superlattices Microstruct. 39, 83 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • S.W. Chan
    • 1
  • R. Barille
    • 1
  • J.M. Nunzi
    • 1
    Email author
  • K.H. Tam
    • 2
  • Y.H. Leung
    • 2
  • W.K. Chan
    • 3
  • A.B. Djurišić
    • 2
  1. 1.POMA, UMR-CNRS 6136Université d’AngersAngersFrance
  2. 2.Department of PhysicsThe University of Hong KongHong KongP.R. China
  3. 3.Department of ChemistryThe University of Hong KongHong KongP.R. China

Personalised recommendations