Advertisement

Applied Physics B

, Volume 84, Issue 1–2, pp 343–350 | Cite as

Time-resolved cathodoluminescence of InGaAs/AlGaAs tetrahedral pyramidal quantum structures

  • M. MeranoEmail author
  • S. Sonderegger
  • A. Crottini
  • S. Collin
  • E. Pelucchi
  • P. Renucci
  • A. Malko
  • M.H. Baier
  • E. Kapon
  • J.D. Ganière
  • B. Deveaud
Article

Abstract

An original time resolved cathodoluminescence set up has been used to investigate the optical properties and the carrier transport in quantum structures located in InGaAs/AlGaAs tetrahedral pyramids. An InGaAs quantum dot formed just below the top of the pyramid is connected to four types of low-dimensional barriers: InGaAs quantum wires on the edges of the pyramid, InGaAs quantum wells on the (111)A facets and segregated AlGaAs vertical quantum wire and AlGaAs vertical quantum wells formed at the centre and at the pyramid edges. Experiments were performed at a temperature of 92 K, an accelerating voltage of 10 kV and a beam probe current of 10 pA. The cathodoluminescence spectrum shows five luminescence peaks. Rise and decay times for the different emission wavelengths provide a clear confirmation of the peak attribution (previously done with other techniques) to the different nanostructures grown in a pyramid. Moreover, experimental results suggest a scenario where carriers diffuse from the lateral quantum structures towards the central structures (the InGaAs quantum dot and the segregated AlGaAs vertical quantum wire) via the InGaAs quantum wires on the edges of the pyramid. According to this hypothesis, we have modeled the carrier diffusion along these quantum wires. An ambipolar carrier mobility of 1400 cm2/V s allows to obtain a good fit to all temporal dependences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bimberg, Quantum Dot Heterostructures (1st ed., Wiley, 1999)Google Scholar
  2. 2.
    A. Gustafsson, M.E. Pistol, L. Montelius, L. Samuelson, J. Appl. Phys. 84, 1715 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, 1996)Google Scholar
  4. 4.
    A. Hartmann, Y. Ducommun, K. Leifer, E. Kapon, J. Phys.: Condens. Matter 11, 5901 (1999)ADSGoogle Scholar
  5. 5.
    M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M.H. Baier, E. Kapon, B. Deveaud, J.D. Ganiere, Nature 438, 479 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, F. Fuzesi, D. Martin, B. Deveaud, J.D. Ganiere, unpublishedGoogle Scholar
  7. 7.
    M. Merano, S. Collin, P. Renucci, M. Gatri, S. Sonderegger, A. Crottini, J.D. Ganiere, B. Deveaud, Rev. Sci. Instrum. 76, 085108 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    E. Pelucchi, M. Baier, Y. Ducommun, S. Watanabe, E. Kapon, Phys. Stat. Solidi B 238, 233 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    A. Hartmann, L. Loubies, F. Reinhardt, E. Kapon, Appl. Phys. Lett. 71, 1314 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    G. Biasiol, E. Kapon, Phys. Rev. Lett. 81, 2962 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Ducommun, Semiconductor Quantum Dots Grown in Inverted Pyramids, PhD thesis, EPFL (2001)Google Scholar
  12. 12.
    E. Kapon, E. Pelucchi, S. Watanabe, A. Malko, M. Baier, K. Leifer, B. Dwir, F. Michelini, M. Dupertuis, Physica E 25, 288 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    K. Leifer, A. Hartmann, Y. Ducommun, E. Kapon, Appl. Phys. Lett. 77, 3923 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    B. Deveaud, F. Clerot, A. Regreny, K. Fujiwara, K. Mitsunaga, J. Ohta, Appl. Phys. Lett. 55, 2646 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    L. Reimer, Scanning Electron Microscope (1st ed., Springer, 1985)CrossRefGoogle Scholar
  16. 16.
    D.Y. Oberli, M.A. Dupertuis, F. Reinhardt, E. Kapon, Phys. Rev. B 59, 2910 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    F. Reif, Statistical and Thermal Physics (McGraw-Hill, 1985)Google Scholar
  18. 18.
    B. Deveaud, A. Chomette, B. Lambert, A. Regreny, R. Romestain, P. Edel, Solid State Commun. 57, 885 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    A. Chomette, B. Deveaud, J.Y. Emery, A. Regreny, B. Lambert, Solid State Commun. 54, 75 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    V. Emiliani, F. Intonti, C. Lienau, T. Elsaesser, R. Notzel, K.H. Ploog, Phys. Rev. B 64, 155316 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Merano
    • 1
    Email author
  • S. Sonderegger
    • 1
  • A. Crottini
    • 1
  • S. Collin
    • 1
  • E. Pelucchi
    • 1
  • P. Renucci
    • 1
  • A. Malko
    • 1
  • M.H. Baier
    • 1
  • E. Kapon
    • 1
  • J.D. Ganière
    • 1
  • B. Deveaud
    • 1
  1. 1.Institute of Quantum Electronics and PhotonicsEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations