Applied Physics B

, Volume 84, Issue 3, pp 517–521 | Cite as

Time-of-flight measurements of ejected particles during dry laser cleaning

  • D. GrojoEmail author
  • A. Cros
  • P. Delaporte
  • M. Sentis


We propose an experimental approach which allows the characterization of the dynamics of the ejected particles in dry laser cleaning. Submicron silica particles on silicon substrates were illuminated by single nanosecond laser pulses at fluences which lead to particle removal. Time- and space-resolved scattered signal detection was demonstrated as a suitable technique to perform time-of-flight analyses of the ejected particles. The determination of the resulting detachment velocity at the particle removal threshold fluence contributes to a better understanding of mechanisms involved in dry laser cleaning. In particular, the present study evidences that the removal efficiency of the laser process is not based on the thermal expansion of materials.


Particle Cloud Nanosecond Laser Pulse Particle Removal Ejection Velocity Laser Cleaning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.S. Luk’yanchuk, Z.B. Wang, W.D. Song, M.H. Hong, Appl. Phys. A 79, 747 (2004)CrossRefADSGoogle Scholar
  2. 2.
    N. Arnold, Appl. Surf. Sci. 15, 208 (2003)Google Scholar
  3. 3.
    D. Grojo, M. Boyomo-Onana, A. Cros, P. Delaporte, Appl. Surf. Sci. (2006), unpublishedGoogle Scholar
  4. 4.
    M. Mosbacher, V. Dobler, J. Boneberg, P. Leiderer, Appl. Phys. A 70, 669 (2000)ADSGoogle Scholar
  5. 5.
    P. Neves, M. Arronte, R. Vilar, A.M. Bothelodo, Appl. Phys. A 74, 191 (2002)CrossRefADSGoogle Scholar
  6. 6.
    C. Cetinkaya, R. Vanderwood, M. Rowell, J. Adhes. Sci. Technol. 16, 1201 (2002)CrossRefGoogle Scholar
  7. 7.
    M. Mosbacher, H.J. Munzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer, Appl. Phys. A 72, 41 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    N. Arnold, G. Schrems, D. Bauerle, Appl. Phys. A 79, 729 (2004)CrossRefADSGoogle Scholar
  9. 9.
    G. Vereecke, E. Röhr, M.M. Heyns, J. Appl. Phys. 85, 3837 (1999)CrossRefADSGoogle Scholar
  10. 10.
    M. Mosbacher, M. Bertsch, H.J. Münzer, V. Dobler, B.U. Runge, D. Bäuerle, J. Boneberg, P. Leiderer, Proc. SPIE 4426, 308 (2002)CrossRefADSGoogle Scholar
  11. 11.
    Y.W. Zheng, B.S. Luk’yanchuk, Y.F. Lu, W.D. Song, Z.H. Mai, J. Appl. Phys. 90, 2135 (2001)CrossRefADSGoogle Scholar
  12. 12.
    V. Dobler, R. Oltra, J.P. Boquillon, M. Mosbacher, J. Boneberg, P. Leiderer, Appl. Phys. A 69, 335 (1999)CrossRefADSGoogle Scholar
  13. 13.
    W.D. Song, M.H. Hong, S.H. Lee, Y.F. Lu, T.C. Chong, Appl. Surf. Sci. 208, 306 (2003)CrossRefADSGoogle Scholar
  14. 14.
    K. Chen, A. Kromin, M.P. Ulmer, B.W. Wessels, V. Backman, Opt. Commun. 228, 1 (2003)CrossRefADSGoogle Scholar
  15. 15.
    G. Mie, Ann. Phys. 25, 377 (1908)CrossRefGoogle Scholar
  16. 16.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, 1999)Google Scholar
  17. 17.
    B.S. Luk’yanchuk, N. Arnold, S.M. Huang, Z.B. Wang, M.H. Hong, Appl. Phys. A 77, 209 (2003)ADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.LP3, UMR 6182CNRS – Université de la MediterranéeMarseille Cedex 9France

Personalised recommendations