Applied Physics B

, Volume 84, Issue 3, pp 511–516

Thickness of SiO2 thin film on silicon wafer measured by dispersive white-light spectral interferometry

  • P. Hlubina
  • D. Ciprian
  • J. Luňáček
  • M. Lesňák
Article
  • 531 Downloads

Abstract

We present a white-light spectral interferometric technique for measuring the thickness of SiO2 thin film on a silicon wafer. The technique utilizes a slightly dispersive Michelson interferometer with a cube beam splitter and a fibre-optic spectrometer to record channelled spectra in two configurations. In the first, a standard configuration with two identical metallic mirrors, the recorded channelled spectrum is fitted to the theoretical one to determine the effective thickness of the beam splitter made of BK7 optical glass. In the second configuration one of the mirrors is replaced by SiO2 thin film on the silicon wafer and the recorded channelled spectrum is fitted to the theoretical one to determine the thin-film thickness. We consider multiple reflection within the thin-film structure, use the optical constants for all the materials involved in the set-up, and confirm very good agreement between theory and experiment. The technique is applied to four samples with various SiO2 film thicknesses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999)Google Scholar
  2. 2.
    R.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977)Google Scholar
  3. 3.
    G.E. Jellison Jr., Thin Solid Films 290291, 40 (1996)CrossRefGoogle Scholar
  4. 4.
    T.M. Merklein, Appl. Opt. 29, 505 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kildemo, V. Dalsrud, O. Fostad, Opt. Eng. 38, 1542 (1999)CrossRefADSGoogle Scholar
  6. 6.
    S.-W. Kim, G.-H. Kim, Appl. Opt. 38, 5968 (1999)CrossRefADSGoogle Scholar
  7. 7.
    U. Schnell, R. Dändliker, S. Gray, Opt. Lett. 21, 528 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    P. Hlubina, I. Gurov, V. Chugunov, Optik 114, 389 (2003)ADSGoogle Scholar
  9. 9.
    T. Doi, K. Toyoda, Y. Tanimura, Appl. Opt. 36, 7157 (1997)CrossRefADSGoogle Scholar
  10. 10.
    A. Pförtner, J. Schwider, Appl. Opt. 40, 6223 (2001)CrossRefADSGoogle Scholar
  11. 11.
    P. Hlubina, Acta Phys. Slov. 55, 387 (2005)Google Scholar
  12. 12.
    C. Sáinz, P. Jourdain, R. Escalona, J. Calatroni, Opt. Commun. 110, 381 (1994)CrossRefADSGoogle Scholar
  13. 13.
    H. Delbarre, C. Przygodzki, M. Tassou, D. Boucher, Appl. Phys. B 70, 45 (2000)CrossRefADSGoogle Scholar
  14. 14.
    P. Hlubina, Opt. Commun. 193, 1 (2001)CrossRefADSGoogle Scholar
  15. 15.
    P. Hlubina, J. Mod. Opt. 51, 537 (2004)ADSGoogle Scholar
  16. 16.
    Schott Computer Glass Catalog 1.0 (Schott Glasswerke, Mainz, 1992)Google Scholar
  17. 17.
    K. Postava, T. Yamaguchi, J. Appl. Phys. 89, 2189 (2001)CrossRefADSGoogle Scholar
  18. 18.
    J.D. Plummer, M.D. Deal, P.B. Griffin, Silicon VLSI Technology, Fundamentals, Practice and Modeling (Prentice Hall, Upper Saddle River, 2000)Google Scholar
  19. 19.
    P. Hlubina, I. Gurov, V. Chugunov, J. Mod. Opt. 50, 2067 (2003)ADSGoogle Scholar
  20. 20.
    Optimalization Toolbox for Use with MATLAB (MathWorks, Mass., 2000)Google Scholar
  21. 21.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1995)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • P. Hlubina
    • 1
  • D. Ciprian
    • 1
  • J. Luňáček
    • 1
  • M. Lesňák
    • 1
  1. 1.Department of PhysicsTechnical University OstravaOstrava-PorubaCzech Republic

Personalised recommendations