Applied Physics B

, Volume 85, Issue 2–3, pp 421–426

Current status of clinical breath analysis

Article

Abstract

Clinical breath analysis remains in its infancy, despite the fact that its potential has been recognized for centuries and that blood, urine, and other bodily fluids and tissues are routinely analyzed to diagnose disease or to monitor therapy. This review discusses the present status of clinical breath analysis and suggests reasons why breath analysis has not received similar widespread clinical use. Currently, a number of marker molecules have been identified in breath that could be used to identify disease, disease progression, or to monitor therapeutic intervention and this list is expected increase dramatically since the analysis of breath is ideally suited for population-based studies in the developed and underdeveloped world. Recent advances in analytical instrumentation have suggested that the use of exhaled breath in medicine should now be re-examined. In particular, the availability of real-time, portable monitors will represent a breakthrough for clinical diagnosis. Progress in clinical breath analysis will require collaboration amongst device makers, experts in breath analysis, and clinicians.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Pauling, A.B. Robinson, R. Teranishi, P. Cary, Proc. Nat. Acad. Sci. 68, 2374 (1971)CrossRefADSGoogle Scholar
  2. 2.
    B.O. Jansson, B.T. Larsson, J. Lab. Clin. Med. 74, 961 (1969)Google Scholar
  3. 3.
    S. Chen, L. Zieve, V. Mahadevan, J. Lab. Clin. Med. 75, 628 (1970)Google Scholar
  4. 4.
    C.A. Riely, G. Cohen, M. Lieberman, Science 183, 208 (1974)CrossRefADSGoogle Scholar
  5. 5.
    J.R. Dannecker Jr., E.G. Shaskan, M. Phillips, Anal. Biochem. 114, 1 (1981)CrossRefGoogle Scholar
  6. 6.
    K.B. Schwarz, J.M. Cox, S. Sharma, L. Clement, J. Humphrey, C. Gleason, H. Abbey, S.S. Sehnert, T.H. Risby, J. Pediatr. Gastr. Nutr. 25, 408 (1997)CrossRefGoogle Scholar
  7. 7.
    T.H. Risby, W. Maley, R.P. Scott, G.B. Bulkley, M. Kazui, S.S. Sehnert, K.B. Schwarz, J. Potter, E. Mezey, A.S. Klein, P. Colombani, J. Fair, W.T. Merritt, C. Beattie, M.C. Mitchell, G.M. Williams, B.A. Perler, R.T. Donham, J.F. Burdick, Surgery 115, 94 (1994)Google Scholar
  8. 8.
    K.A. Cope, Breath Biomarkers of Exposure and Disease. PhD Dissertation, Johns Hopkins University (2002)Google Scholar
  9. 9.
    M. Refat, T.J. Moore, M. Kazui, T.H. Risby, J.A. Perman, K.B. Schwarz, Pediatr. Res. 30, 396 (1991)CrossRefGoogle Scholar
  10. 10.
    A.S. Modak, 13C Breath tests: transition from research to clinical practice. In: Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring, ed. by A. Amann, D. Smith (World Scientific, Singapore, 2005) pp. 457–478Google Scholar
  11. 11.
    S. Kharitonov, K. Alving, P.J. Barnes, Eur. Resp. J. 10, 1683 (1997)CrossRefGoogle Scholar
  12. 12.
    Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide in Adults and Children-1999. This Official Statement of the American Thoracic Society was Adopted by the ATS Board of Directors, July 1999. Am. J. Respir. Crit. Care Med. 160, 2104 (1999)Google Scholar
  13. 13.
    T.H. Risby, S.S. Sehnert, Free Radical Biol. Med. 27, 1182 (1999)CrossRefGoogle Scholar
  14. 14.
    J.K. Schubert, W. Miekisch, T. Bireken, K. Geiger, G.F.E. Noldge-Schomberg, Biomarkers 10, 138 (2005)CrossRefGoogle Scholar
  15. 15.
    J.D. Pleil, D. Kim, J.D. Prah, D.L. Ashley, S.M. Rappaport, The unique value of breath biomarkers for estimating pharmacokinetic rate conatnats and body burden from environmental exposure. In: Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring, ed. by A. Amann, D. Smith (World Scientific, Singapore, 2005) pp. 347–359Google Scholar
  16. 16.
    J.K. Furne, J.R. Springfield, S.B. Ho, M.D. Levitt, J. Lab. Clin. Med. 142, 52 (2003)CrossRefGoogle Scholar
  17. 17.
    K.A. Cope, M.T. Watson, W.M. Foster, S.S. Sehnert, T.H. Risby, J. Appl. Physiol. 96, 1371 (2004)CrossRefGoogle Scholar
  18. 18.
    J.H. Gross, Mass Spectrometry A Textbook (Springer, New York, 2004)Google Scholar
  19. 19.
    F.M. Benoit, W.R. Davidson, A.M. Lovett, S. Nacson, A. Ngo, Int. Arch. Occup. Environ. Health 55, 113 (1985)CrossRefGoogle Scholar
  20. 20.
    D. Smith, P. Spanel, Selected ion flow tube mass spectrometry, SIFT-MS, for on-line trace gas analysis of breath. In: Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring, ed by A. Amann, D. Smith (World Scientific, Singapore, 2005) pp. 3–34Google Scholar
  21. 21.
    M. Phillips, J. Herrera, S. Krishnan, M. Zain, J. Greenberg, R.N. Cataneo, J. Chromatogr. B 729, 75 (1999)CrossRefGoogle Scholar
  22. 22.
    G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, F.K. Tittel, Appl. Opt. 43, 6040 (2004)CrossRefADSGoogle Scholar
  23. 23.
    L.R. Narasimhan, W. Goodman, C.K. Patel, Proc. Nat. Acad. Sci. USA 98, 46121 (2001)CrossRefGoogle Scholar
  24. 24.
    S.A. Kharitonov, P.J. Barnes, Biomarkers 7, 1 (2002)CrossRefGoogle Scholar
  25. 25.
    S.M. Studer, I. Rosas, K.A. Cope, J. Krishnan, J.B. Orens, T.H. Risby, J. Heart Lung Transplant. 20, 1158 (2001)CrossRefGoogle Scholar
  26. 26.
    J.B. McCafferty, T.A. Bradshaw, S. Tate, A.P. Greening, J.A. Innes, Thorax 59, 694 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Environmental Health Sciences, Bloomberg School of Public Healththe Johns Hopkins Medical InstitutionsBaltimoreUSA
  2. 2.Department of Medicine, Division of Gastroenterology, School of Medicinethe Johns Hopkins Medical InstitutionsBaltimoreUSA

Personalised recommendations