Applied Physics B

, Volume 84, Issue 1–2, pp 289–293 | Cite as

Silver nanoparticle coverage dependence of surface-enhanced Raman scattering

  • Z. Wang
  • L.J. RothbergEmail author


We report surface-enhanced Raman scattering (SERS) from 4-mercaptopyridine adsorbed on nanotextured silver surfaces as the coverage of silver is varied. The degree of surface enhancement is strongly dependent on silver coverage and correlated to the extinction of the surface at the Raman excitation wavelength, that extinction being determined by multiparticle surface plasmon resonances. The coverage dependence of the Raman intensity is consistent with signals being dominated by molecules at junctions inside nanoparticle aggregates where electromagnetic energy is localized into “hot spots” by interactions of the incident and scattered fields with the surface plasmons. The Raman intensity drops precipitously near the conductivity percolation threshold because these hot spots are destroyed when conducting paths allow plasmons to propagate. Our approach to substrate preparation provides clean surfaces with average enhancements ≥107, an order of magnitude larger than typical for SERS.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.E. Moerner, J. Phys. Chem. B 106, 910 (2002)CrossRefGoogle Scholar
  2. 2.
    T. Basché, W.E. Moerner, M. Orrit, U.P. Wild (Eds.), Single Molecule Optical Detection, Imaging and Spectroscopy (Weinheim, NY, 1997)Google Scholar
  3. 3.
    M. Lippitz, F. Kulzer, M. Orrit, Chem. Phys. Chem. 6, 770 (2005)CrossRefGoogle Scholar
  4. 4.
    K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Chem. Rev. 99, 2957 (1999)CrossRefGoogle Scholar
  5. 5.
    S. Nie, S.R. Emory, Science 275, 1102 (1997)CrossRefGoogle Scholar
  6. 6.
    A.M. Michaels, J. Jiang, L.E. Brus, J. Phys. Chem. B 104, 11965 (2000)CrossRefGoogle Scholar
  7. 7.
    Z. Wang, L.J. Rothberg, J. Phys. Chem. B 109, 3387 (2005)CrossRefGoogle Scholar
  8. 8.
    L. Jeanmaire, R.P. van Duyne, J. Electroanal. Chem. 84, 1 (1977)CrossRefGoogle Scholar
  9. 9.
    M.G. Albrecht, J.A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977)CrossRefGoogle Scholar
  10. 10.
    M. Kerker, Selected Papers on Surface-Enhanced Raman Scattering (SPIE Optical Engineering Press, Bellingham, WA, 1990)Google Scholar
  11. 11.
    M. Moskovits, Rev. Mod. Phys. 57, 783 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    C.A. Murray, D.L. Allara, M. Rhinewine, Phys. Rev. Lett. 46, 57 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    H. Seki, J. Chem. Phys. 76, 4412 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    H.Z. Yu, J. Zhang, H.L. Zhang, Z.F. Liu, Langmuir 15, 16 (1999)CrossRefGoogle Scholar
  15. 15.
    D.J. Maxwell, S.R. Emory, S. Nie, Chem. Mater. 13, 1082 (2001)CrossRefGoogle Scholar
  16. 16.
    P.F. Liao, J.G. Bergman, D.S. Chemla, A. Wokaun, J. Melngailis, A.M. Hawryuk, Chem. Phys. Lett. 82, 355 (1981)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Saito, J.J. Wang, D.A. Smith, D.N. Batchelder, Langmuir 18, 2959 (2002)CrossRefGoogle Scholar
  18. 18.
    Z. Wang, S. Pan, T.D. Kraus, H. Du, L.J. Rothberg, Proc. Nat. Acad. Sci. 100, 8638 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    V.M. Shalaev (Ed.), Top. Appl. Phys. 82, 185 (2002)Google Scholar
  20. 20.
    A.K. Sarychev, V.M. Shalaev, Phys. Rep. 335, 275 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    M.I. Stockman, Phys. Rev. E 56, 6494 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    H.S. Jung, K. Kim, M.S. Kim, J. Mol. Struct. 407, 139 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    J. Hu, B. Zhao, W. Xu, Spectrochim. Acta. 58A, 2827 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    J.A. Baldwin, B. Vlckova, M.P. Andrews, I.S. Butler, Langmuir 13, 3744 (1997)CrossRefGoogle Scholar
  25. 25.
    J.A. Baldwin, N. Schuhler, I.S. Butler, M.P. Andrews, Langmuir 12, 6389 (1996)CrossRefGoogle Scholar
  26. 26.
    K. Seal, A.K. Sarychev, H. Noh, D.A. Genov, A. Yamilov, V.M. Shalaev, Z.C. Ying, H. Cao, Phys. Rev. Lett. 94, 226101 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    V.M. Shalaev (Ed.), Top. Appl. Phys. 82, 93 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    A.K. Sarychev, V.A. Shubin, V.M. Shalaev, Phys. Rev. B 60, 16389 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    V.A. Shubin, A.K. Sarychev, J.P. Clerc, V.M. Shalaev, Phys. Rev. B 62, 11230 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    S. Ducoutieux, V.A. Podolskiy, S. Gresillon, S. Buil, B. Berini, P. Gadenne, A.C. Boccara, J.C. Rivoal, Phys. Rev. B 64, 165403 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    K. Seal, M.A. Nelson, Z.C. Ying, D.A. Genov, A.S. Sarychev, V.M. Shalaev, Phys. Rev. B 67, 35318 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    S. Gresillon, L. Aigouy, A.C. Boccara, J.C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V.A. Shubin, A.K. Sarychev, V.M. Shalaev, Phys. Rev. Lett. 82, 4520 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    A. Otto, Phys. Stat. Solidi A 188, 1455 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    K. Li, M. Stockman, D.J. Bergman, Phys. Rev. Lett. 91, 227402 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of RochesterRochesterUSA

Personalised recommendations