Advertisement

Applied Physics B

, Volume 84, Issue 1–2, pp 339–341 | Cite as

The rapid preparation of large-scale CdS opal photonic crystals and study of the optical properties

Article

Abstract

Monodispersed silica microspheres of 270 nm are synthesized by a colloidal solution method. Larger scale perfect three-dimensional photonic crystals (PCs) are rapidly prepared using the evaporation of acetone to self-assemble the microspheres on quartz substrates by vertical deposition methods. We find that the pseudo-photonic band gap (PBG) of the PC structure changes with increasing annealing temperature; it drastically shifts from 450 nm for as-grown crystals to 409 nm for annealing at 800 °C. CdS photonic crystals are formed by infiltrating CdS nanocrystals of 6 nm into the SiO2 PC structure. The transmission and spontaneous emission characteristics of CdS PCs have been investigated. The clear dip in the spontaneous emission spectrum relates to the photonic band gap of CdS PCs, indicating that the spontaneous emission is inhibited in the region of the PBG. The emission band of CdS PCs becomes narrower and sharper than that of CdS nanocrystals; this demonstrates that the emission band and intensity of the luminescent devices will be tuned by controlling the position of the PBG.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    S. John, Phys. Rev. Lett. 58, 2486 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    Y.A. Vlasov, K. Luterova, I. Pelant, B. Honerlage, V. Astratov, Appl. Phys. Lett. 71, 1616 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    V.N. Astratov, Y.A. Vlasov, O.Z. Karimov, A.A. Kaplyanskii, Y.G. Musikhin, N.A. Bert, V.N. Bogomolov, A.V. Prokofiev, Phys. Lett. A 222, 349 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    E.P. Petrov, V.N. Bogomolov, I.I. Kalosha, S.V. Gaponenko, Phys. Rev. Lett. 81, 77 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    J.P. Dowling, M. Scalora, M.J. Bloemer, C.M. Bowden, J. Appl. Phys. 75, 1896 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    Q. Yan, Z. Zhou, X.S. Zhao, Chem. Mater. 17, 3069 (2005)CrossRefGoogle Scholar
  8. 8.
    H. Mýguez, V. Kitaev, G.A. Ozin, Appl. Phys. Lett. 84, 1239 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Q. Yan, Z. Zhou, X.S. Zhao, Chem. Mater. 17, 3069 (2005)CrossRefGoogle Scholar
  10. 10.
    H. Míguez, V. Kitaev, G.A. Ozin, Appl. Phys. Lett. 84, 1239 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    A.V. Blaaderen, R. Ruel, P. Wiltzius, Nature 385, 321 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    P. Jiang, J.F. Bertone, K.S. Hwang, V.L. Colvin, Chem. Mater. 11, 2132 (1999)CrossRefGoogle Scholar
  13. 13.
    S.H. Park, D. Qin, Y. Xia, Adv. Mater. 10, 1028 (1998)CrossRefGoogle Scholar
  14. 14.
    O.D. Velev, T.A. Jede, R.F. Lobo, A.M. Lenhoff, Nature 389, 447 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Zhou, X.S. Zhao, Langmuir 20, 1524 (2004)CrossRefGoogle Scholar
  16. 16.
    M. Egen, R. Zentel, Chem. Mater. 14, 2176 (2002)CrossRefGoogle Scholar
  17. 17.
    B.G. Prevo, O.D. Velev, Langmuir 20, 2099 (2004)CrossRefGoogle Scholar
  18. 18.
    N. Te’treault, A. Mihi, H. Mýguez, I. Rodrýguez, G.A. Ozin, F. Meseguer, V. Kitaev, Adv. Mater. 16, 346 (2004)CrossRefGoogle Scholar
  19. 19.
    E. Palacios-Lidon, J.F. Galisteo-lopez, B.H. Juarez, C. López, Adv. Mater. 16, 341 (2004)CrossRefGoogle Scholar
  20. 20.
    X. Ma, G. Lu, B. Yang, Appl. Surf. Sci. 187, 235 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Photoelectrical Materials, Department of PhysicsShaoxing College of Arts and SciencesShaoxingP.R. China

Personalised recommendations