Advertisement

Applied Physics B

, Volume 85, Issue 4, pp 611–617 | Cite as

Production of hollow cylindrical plasmas for laser guiding in acceleration experiments

  • A. GamucciEmail author
  • M. Galimberti
  • D. Giulietti
  • L.A. Gizzi
  • L. Labate
  • C. Petcu
  • P. Tomassini
  • A. Giulietti
Article

Abstract

One of the major tasks for the progress of laser acceleration of electrons in plasmas is the guiding of focused pulses along path lengths much larger than the depth of focus. We have tested experimentally the production of hollow plasmas in gas to be used as guiding medium. We induced optical breakdown in Helium with a nanosecond laser pulse similar to the Amplified Spontaneous Emission (ASE) pedestal of a powerful ultrashort laser pulse. The plasma produced in this way was carefully characterized by high resolution interferometry. Plasma channels several millimeters in length whose density, depth and width match the requirements for an efficient guiding have been obtained. Channels with a variety of parameters can be created according to the well-known dynamics of the plasmas produced by optical breakdown.

Keywords

Laser Pulse Blast Wave Plasma Channel Optical Breakdown Nanosecond Laser Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)CrossRefADSGoogle Scholar
  2. 2.
    T. Katsouleas, Nature 431, 515 (2004)CrossRefADSGoogle Scholar
  3. 3.
    S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Nature 431, 535 (2004)CrossRefADSGoogle Scholar
  4. 4.
    C.G.R. Geddes, C.S. Toth, J. Van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, Nature 431, 538 (2004)CrossRefADSGoogle Scholar
  5. 5.
    J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, V. Malka, Nature 431, 541 (2004)CrossRefADSGoogle Scholar
  6. 6.
    P. Sprangle, E. Esarey, J. Krall, G. Joyce, Phys. Rev. Lett. 69, 2200 (1992)CrossRefADSGoogle Scholar
  7. 7.
    W.P. Leemans, C.W. Siders, E. Esarey, N.E. Andreev, G. Shvets, W.B. Mori, IEEE Trans. Plasma Sci. 24, 331 (1996)CrossRefADSGoogle Scholar
  8. 8.
    E. Esarey, P. Sprangle, J. Krall, A. Ting, IEEE J. of Quantum Electron. QE-33, 1879 (1997)Google Scholar
  9. 9.
    F. Dorchies, J.R. Marquès, B. Cros, G. Matthieussent, C. Courtois, T. Vélikoroussov, P. Audebert, J.P. Geindre, S. Rebibo, G. Hamoniaux, F. Amiranoff, Phys. Rev. Lett. 82, 4655 (1999)CrossRefADSGoogle Scholar
  10. 10.
    T. Hosokai, M. Kando, H. Dewa, H. Kotaki, S. Kondo, N. Hasegawa, K. Nakajima, K. Horioka, Opt. Lett. 25, 10 (2000)ADSGoogle Scholar
  11. 11.
    C.G. Durfee III, H.M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993)CrossRefADSGoogle Scholar
  12. 12.
    V. Kumarappan, K.Y. Kim, H.M. Milchberg, Phys. Rev. Lett. 94, 205004 (2005)CrossRefADSGoogle Scholar
  13. 13.
    H. Sheng, K.Y. Kim, V. Kumarappan, B.D. Layer, H.M. Milchberg, Phys. Rev. E 72, 036411 (2005)CrossRefADSGoogle Scholar
  14. 14.
    P. Sprangle, B. Hafizi, J.R. Peñano, R.F. Hubbard, A. Ting, C.I. Moore, D.F. Gordon, A. Zigler, D. Kaganovich, T.M. Antonsen Jr., Phys. Rev. E 63, 056405 (2001)CrossRefADSGoogle Scholar
  15. 15.
    D. Giulietti, M. Galimberti, A. Giulietti, L.A. Gizzi, P. Tomassini, M. Borghesi, V. Malka, S. Fritzler, M. Pittman, K. Taphouc, Lett. Phys. Plasmas 9, 3655 (2002)CrossRefADSGoogle Scholar
  16. 16.
    G.V. Ostrovskaya, A.N. Zaidel’, Sov. Phys. Uspekhi 16 (6), 834 (1974)Google Scholar
  17. 17.
    T. Auguste, M. Bougeard, E. Caprin, P. D’Oliveira, P. Monot, Rev. Sci. Instrum. 70, 2349 (1999)CrossRefADSGoogle Scholar
  18. 18.
    P. Monot, Ph.D. Thesis, Université de Paris-Sud XI, Orsay (1993)Google Scholar
  19. 19.
    R. Benattar, C. Popovics, R. Sigel, Rev. Sci. Instrum. 50, 1583 (1979)CrossRefADSGoogle Scholar
  20. 20.
    P. Squillacioti, M. Galimberti, L. Labate, P. Tomassini, A. Giulietti, V. Shibkov, F. Zamponi, Phys. Plasmas 11, 226 (2004)CrossRefADSGoogle Scholar
  21. 21.
    P. Tomassini, A. Giulietti, L.A. Gizzi, M. Galimberti, D. Giulietti, M. Borghesi, O. Willi, Appl. Opt. 40, 6561 (2001)ADSGoogle Scholar
  22. 22.
    P. Tomassini, A. Giulietti, Opt. Commun. 199, 143 (2001)CrossRefADSGoogle Scholar
  23. 23.
    D. Giulietti, A. Giulietti, M. Lucchesi, M. Vaselli, J. Appl. Phys. 58, 2916 (1985)CrossRefADSGoogle Scholar
  24. 24.
    H.R. Griem, Principles of PlasmaSpectroscopy (University Press, Cambridge, 1974)Google Scholar
  25. 25.
    A. Yariv, Optical Electronics (Harcourt Brace Jovanovich College Publishers, 1991)Google Scholar
  26. 26.
    C.G. Durfee III, J. Linch, H.M. Milchberg, Opt. Lett. 19, 23 (1994)CrossRefGoogle Scholar
  27. 27.
    A. Giulietti, M. Vaselli, F. Cornolti, D. Giulietti, M. Lucchesi, Rev. Roum. Phys. 32, 23 (1987)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. Gamucci
    • 1
    • 2
    • 3
    Email author
  • M. Galimberti
    • 1
    • 3
  • D. Giulietti
    • 1
    • 2
    • 3
  • L.A. Gizzi
    • 1
    • 3
  • L. Labate
    • 1
    • 4
  • C. Petcu
    • 1
    • 5
  • P. Tomassini
    • 1
    • 3
  • A. Giulietti
    • 1
    • 3
  1. 1.Intense Laser Irradiation Laboratory, IPCFConsiglio Nazionale delle RicerchePisaItaly
  2. 2.Dipartimento di FisicaUniversità di PisaPisaItaly
  3. 3.Sezione di PisaINFNPisaItaly
  4. 4.Laboratori Nazionali di FrascatiINFNRomaItaly
  5. 5.National Institute for Lasers, Plasma and Radiation PhysicsBucharestRomania

Personalised recommendations