Advertisement

Applied Physics B

, 83:333 | Cite as

Laser-induced incandescence: recent trends and current questions

  • C. Schulz
  • B.F. Kock
  • M. Hofmann
  • H. Michelsen
  • S. Will
  • B. Bougie
  • R. Suntz
  • G. Smallwood
Article

Abstract

This paper provides an overview of a workshop focused on fundamental experimental and theoretical aspects of soot measurements by laser-induced incandescence (LII). This workshop was held in Duisburg, Germany in September 2005. The goal of the workshop was to review the current understanding of the technique and identify gaps in this understanding associated with experimental implementation, model descriptions, and signal interpretation. The results of this workshop suggest that uncertainties in the understanding of this technique are sufficient to lead to large variability among model predictions from different LII models, among measurements using different experimental approaches, and between modeled and measured signals, even under well-defined conditions. This article summarizes the content and conclusions of the workshop, discusses controversial topics and areas of disagreement identified during the workshop, and highlights recent important references related to these topics. It clearly demonstrates that despite the widespread application of LII for soot-concentration and particle-size measurements there is still a significant lack in fundamental understanding for many of the underlying physical processes.

Keywords

Polycyclic Aromatic Hydrocarbon Soot Particle Primary Particle Size Soot Volume Fraction Laser Induce Incandescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.E. Dec, SAE Tech. Paper Ser. 920115 (1992)Google Scholar
  2. 2.
    J.E. Dec, A.O. zur Loye, D.L. Siebers, SAE Tech. Paper Ser. 910224 (1991)Google Scholar
  3. 3.
    C. Espey, J.E. Dec, SAE Tech. Paper Ser. 930971 (1993)Google Scholar
  4. 4.
    N.P. Tait, D.A. Greenhalgh, Ber. Bunsenges. Phys. Chem. 97, 1619 (1993)Google Scholar
  5. 5.
    R.L. Vander Wal, K.J. Weiland, Appl. Phys. B 59, 445 (1994)ADSGoogle Scholar
  6. 6.
    R.L. Vander Wal, D.L. Dietrich, Appl. Opt. 34, 1103 (1995)ADSGoogle Scholar
  7. 7.
    T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro, Appl. Opt. 34, 7083 (1995)ADSGoogle Scholar
  8. 8.
    J.A. Pinson, D.L. Mitchell, R.J. Santoro, SAE Tech. Paper Ser. 932650 (1993)Google Scholar
  9. 9.
    C.R. Shaddix, K.C. Smyth, Combust. Flame 107, 418 (1996)Google Scholar
  10. 10.
    C. Allouis, A. D’Alessio, C. Noviello, F. Beretta, Combust. Sci. Technol. 153, 51 (2000)Google Scholar
  11. 11.
    A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30, 71 (1999)Google Scholar
  12. 12.
    B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709 (1997)ADSGoogle Scholar
  13. 13.
    B. Quay, T.-W. Lee, T. Ni, R.J. Santoro, Combust. Flame 97, 384 (1994)Google Scholar
  14. 14.
    P. Roth, O. Brandt, S. von Gersum, Proc. Combust. Inst. 23, 1485 (1990)Google Scholar
  15. 15.
    S. Schraml, S. Will, A. Leipertz, SAE Tech. Paper Ser. 1999-01-0146 (1999)Google Scholar
  16. 16.
    B. Axelsson, R. Collin, P.-E. Bengtsson, Appl. Opt. 39, 3683 (2000)ADSGoogle Scholar
  17. 17.
    S. Will, S. Schraml, K. Bader, A. Leipertz, Appl. Opt. 37, 5647 (1998)ADSGoogle Scholar
  18. 18.
    S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995)ADSGoogle Scholar
  19. 19.
    B. Axelsson, R. Collin, P.-E. Bengtsson, Appl. Phys. B 72, 367 (2001)ADSGoogle Scholar
  20. 20.
    D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005)ADSGoogle Scholar
  21. 21.
    J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 26, 2387 (1996)Google Scholar
  22. 22.
    H. Bockhorn, H. Geitlinger, B. Jungfleisch, T. Lehre, A. Schön, T. Streibel, R. Suntz, Phys. Chem. Chem. Phys. 4, 3780 (2002)Google Scholar
  23. 23.
    B.F. Kock, T. Eckhardt, P. Roth, Proc. Combust. Inst. 29, 2775 (2002)Google Scholar
  24. 24.
    D.R. Snelling, G.J. Smallwood, R. Sawchuk, W.S. Neill, D. Gareau, W. Chippior, F. Liu, W. Bachalo, Ö.L. Gülder, SAE Tech. Paper Ser. 2000-01-1994 (2000)Google Scholar
  25. 25.
    M.S. Tsurikov, K.P. Geigle, V. Krüger, Y. Schneider-Kühnle, W. Stricker, R. Lückerath, R. Hadef, M. Aigner, Combust. Sci. Technol. 177, 1835 (2005)Google Scholar
  26. 26.
    R.W. Weeks, W.W. Duley, J. Appl. Phys. 45, 4661 (1973)ADSGoogle Scholar
  27. 27.
    A.C. Eckbreth, J. Appl. Phys. 48, 4473 (1977)ADSGoogle Scholar
  28. 28.
    L.A. Melton, Appl. Opt. 23, 2201 (1984)ADSGoogle Scholar
  29. 29.
    D.L. Hofeldt, SAE Tech. Paper Ser. 930079 (1993)Google Scholar
  30. 30.
    P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)Google Scholar
  31. 31.
    K.R. McManus, J.H. Frank, M.G. Allen, W.T. Rawlins, in Proc. Am. Inst. Aeronautics and Astronautics, Vol. 36, AIAA 98-0159 (1998)Google Scholar
  32. 32.
    S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439 (2000)Google Scholar
  33. 33.
    D. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, in Proc. 34th National Heat Transfer Conf., NHTC 2000-12132, Pittsburgh, PA, Aug. 20–22 (2000)Google Scholar
  34. 34.
    G.J. Smallwood, D. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transf. 123, 814 (2001)Google Scholar
  35. 35.
    T. Schittkowski, B. Mewes, D. Brüggemann, Phys. Chem. Chem. Phys. 4, 2063 (2002)Google Scholar
  36. 36.
    C. Allouis, F. Beretta, A. D’Alessio, Exp. Therm. Fluid Sci. 27, 455 (2003)Google Scholar
  37. 37.
    H. Bladh, P.-E. Bengtsson, Appl. Phys. B 78, 241 (2004)ADSGoogle Scholar
  38. 38.
    T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)ADSGoogle Scholar
  39. 39.
    H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)ADSGoogle Scholar
  40. 40.
    H.A. Michelsen, P.O. Witze, D. Kayes, S. Hochgreb, Appl. Opt. 42, 5577 (2003)ADSGoogle Scholar
  41. 41.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)Google Scholar
  42. 42.
    V. Krüger, C. Wahl, R. Hadef, K.P. Geigle, W. Stricker, M. Aigner, Meas. Sci. Technol. 16, 1477 (2005)ADSGoogle Scholar
  43. 43.
    B.F. Kock, C. Schulz, P. Roth, Combust. Flame, in press (2006)Google Scholar
  44. 44.
    R. Hadef, V. Krüger, K.P. Geigle, M.S. Tsurikov, Y. Schneider-Kühnle, M. Aigner, Int. Rev. Inst. Fr. Pétrole, in press (2005)Google Scholar
  45. 45.
    F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777 (2006)Google Scholar
  46. 46.
    F. Liu, G.J. Smallwood, D.R. Snelling, J. Quantum Spectrosc. Radiat. Transf. 93, 301 (2005)ADSGoogle Scholar
  47. 47.
    W.H. Dalzell, A.F. Sarofim, J. Heat Transf. 91, 100 (1969)Google Scholar
  48. 48.
    B.J. McCoy, C.Y. Cha, Chem. Eng. Sci. 29, 381 (1974)Google Scholar
  49. 49.
    H.R. Leider, O.H. Krikorian, D.A. Young, Carbon 11, 555 (1973)Google Scholar
  50. 50.
    S.S. Krishnan, K.-C. Lin, G.M. Faeth, J. Heat Transf. 123, 331 (2001)Google Scholar
  51. 51.
    S.C. Lee, C.L. Tien, Proc. Combust. Inst. 18, 1159 (1981)Google Scholar
  52. 52.
    R. Starke, B. Kock, P. Roth, Shock Waves 12, 351 (2003)ADSGoogle Scholar
  53. 53.
    B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689 (2005)Google Scholar
  54. 54.
    H. Chang, T.T. Charalampopoulos, Proc. R. Soc. London. Ser. A 430, 577 (1990)ADSGoogle Scholar
  55. 55.
    A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000)zbMATHGoogle Scholar
  56. 56.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986)Google Scholar
  57. 57.
    E.A. Rohlfing, J. Chem. Phys. 89, 6103 (1988)ADSGoogle Scholar
  58. 58.
    C.B. Stipe, J.H. Choi, D. Lucas, C.P. Koshland, R.F. Sawyer, J. Nanopart. Res. 6, 467 (2004)Google Scholar
  59. 59.
    P.-E. Bengtsson, M. Aldén, Appl. Phys. B 60, 51 (1995)ADSGoogle Scholar
  60. 60.
    C. Schoemaecker Moreau, E. Therssen, X. Mercier, J.F. Pauwels, P. Desgroux, Appl. Phys. B 78, 485 (2004)ADSGoogle Scholar
  61. 61.
    D.S. Coe, J.I. Steinfeld, Chem. Phys. Lett. 76, 485 (1980)ADSGoogle Scholar
  62. 62.
    F. Ossler, T. Metz, M. Aldén, Appl. Phys. B 72, 479 (2001)ADSGoogle Scholar
  63. 63.
    F. Ossler, T. Metz, M. Aldén, Appl. Phys. B 72, 465 (2001)ADSGoogle Scholar
  64. 64.
    A. Leipertz, F. Ossler, M. Aldén, in Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor and Francis, New York, 2002), pp. 359–383Google Scholar
  65. 65.
    R.L. Vander Wal, Proc. Combust. Inst. 27, 2269 (1996)Google Scholar
  66. 66.
    R.L. Vander Wal, K.A. Jensen, M.Y. Choi, Combust. Flame 109, 399 (1997)Google Scholar
  67. 67.
    R.L. Vander Wal, Combust. Flame 112, 607 (1998)Google Scholar
  68. 68.
    K.C. Smyth, C.R. Shaddix, D.A. Everest, Combust. Flame 111, 185 (1997)Google Scholar
  69. 69.
    P. Andreussi, B. Barbieri, L. Petarca, Combust. Sci. Technol. 49, 123 (1986)Google Scholar
  70. 70.
    A. Gomez, M.G. Littman, I. Glassman, Combust. Flame 70, 225 (1987)Google Scholar
  71. 71.
    L. Petarca, F. Marconi, Combust. Flame 78, 308 (1989)Google Scholar
  72. 72.
    F. Cignoli, S. Benecchi, G. Zizak, Opt. Lett. 17, 229 (1992)ADSCrossRefGoogle Scholar
  73. 73.
    C.S. McEnally, L.D. Pfefferle, Combust. Flame 121, 607 (2000)Google Scholar
  74. 74.
    A. Ciajolo, B. Apicella, R. Barbella, A. Tregrosso, F. Beretta, C. Allouis, Energ. Fuel. 15, 987 (2001)Google Scholar
  75. 75.
    T.L. Farias, M.G. Carvalho, Ü.Ö. Köylü, G.M. Faeth, J. Heat Transf. 117, 152 (1995)Google Scholar
  76. 76.
    T.L. Farias, Ü.Ö. Köylü, M.G. Carvalho, Appl. Opt. 35, 6560 (1996)ADSGoogle Scholar
  77. 77.
    G.W. Mulholland, R.D. Mountain, Combust. Flame 119, 56 (1999)Google Scholar
  78. 78.
    G.W. Mulholland, C.F. Bohren, K.A. Fuller, Langmuir 10, 2533 (1994)Google Scholar
  79. 79.
    R.L. Vander Wal, Appl. Opt. 35, 6548 (1996)ADSGoogle Scholar
  80. 80.
    M. Hofmann, W.G. Bessler, C. Schulz, H. Jander, Appl. Opt. 42, 2052 (2003)ADSGoogle Scholar
  81. 81.
    D.J. Bryce, N. Ladommatos, H. Zhao, Appl. Opt. 39, 5012 (2000)ADSGoogle Scholar
  82. 82.
    R.L. Vander Wal, K.A. Jensen, Appl. Opt. 37, 1607 (1998)ADSGoogle Scholar
  83. 83.
    H. Bladh, P.E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, P. Desgroux, Appl. Phys. B (2006), DOI: 10.1007/s00340-006-2197-yGoogle Scholar
  84. 84.
    P. Monchicourt, Phys. Rev. Lett. 66, 1430 (1991)ADSGoogle Scholar
  85. 85.
    S. Arepalli, C.D. Scott, Chem. Phys. Lett. 302, 139 (1999)ADSGoogle Scholar
  86. 86.
    S. Arepalli, P. Nikolaev, W. Holmes, C.D. Scott, Appl. Phys. A 70, 125 (2000)ADSGoogle Scholar
  87. 87.
    A.A. Puretzky, D.B. Geohegan, X. Fan, S.J. Pennycook, Appl. Phys. Lett. 76, 182 (2000)ADSGoogle Scholar
  88. 88.
    R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Appl. Phys. B 67, 115 (1998)ADSGoogle Scholar
  89. 89.
    W. Koechner, Solid-State Laser Engineering (Springer, Berlin, 1999)zbMATHGoogle Scholar
  90. 90.
    D. Choi, M. Iwamuro, Y. Shima, J. Senda, H. Fujimoto, SAE Tech. Paper Ser. 2001-01-1255 (2001)Google Scholar
  91. 91.
    A.E. Greis, G. Grünefeld, M. Becker, S. Pischinger, Quantitative measurements of the soot distribution in a realistic common rail D.I. Diesel engine. In 11th Int. Symp. Application of Laser Techniques to Fluid Mechanics, Lisbon, 2002Google Scholar
  92. 92.
    T.R. Meyer, S. Roy, V.M. Belovich, E. Corporan, J.R. Gord, Appl. Opt. 44, 445 (2005)ADSGoogle Scholar
  93. 93.
    B.F. Kock, P. Roth, Two-color TR-LII applied to in-cylinder Diesel particle sizing. In Proc. Eur. Combustion Meet., Orléans (2003)Google Scholar
  94. 94.
    G.D. Yoder, P.K. Diwakar, D.W. Hahn, Appl. Opt. 20, 4211 (2005)ADSGoogle Scholar
  95. 95.
    P.O. Witze, S. Hochgreb, D. Kayes, H.A. Michelsen, C.R. Shaddix, Appl. Opt. 40, 2443 (2001)ADSGoogle Scholar
  96. 96.
    C.J. Dasch, Appl. Opt. 23, 2209 (1984)ADSGoogle Scholar
  97. 97.
    G.J. Smallwood, D. Clavel, D. Gareau, R.A. Sawchuk, D.R. Snelling, P.O. Witze, B. Axelsson, W.D. Bachalo, Ö.L. Gülder, SAE Tech. Paper Ser. 2002-01-2715 (2002)Google Scholar
  98. 98.
    S.S. Krishnan, K.C. Lin, G.M. Faeth, J. Heat Transf. 122, 517 (2000)Google Scholar
  99. 99.
    M.Y. Choi, G.W. Mulholland, A. Hamins, T. Kashiwagi, Combust. Flame 102, 161 (1995)Google Scholar
  100. 100.
    M. Schnaiter, H. Horvath, O. Mohler, K.-H. Naumann, H. Saathoff, O.W. Schock, J. Aerosol Sci. 34, 1421 (2003)Google Scholar
  101. 101.
    C.W. Bruce, T.F. Stromberg, K.P. Gurton, J.B. Mozer, Appl. Opt. 30, 1537 (1991)ADSGoogle Scholar
  102. 102.
    R.A. Dobbins, G.W. Mulholland, N.P. Bryner, Atmos. Environ. 28, 889 (1994)Google Scholar
  103. 103.
    D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, E.J. Weckman, R.A. Fraser, AIAA J. 40, 1789 (2002)ADSGoogle Scholar
  104. 104.
    V. Beyer, D.A. Greenhalgh, Appl. Phys. B (2006), DOI: 10.1007/s00340-006-2238-6Google Scholar
  105. 105.
    H.A. Michelsen, Appl. Phys. B (2006), DOI: 10.1007/s00340-006-2226-xGoogle Scholar
  106. 106.
    K.A. Thomson, D.R. Snelling, G.J. Smallwood, F. Liu, Appl. Phys. B (2006), DOI: 10.1007/s00340-006-2198-xGoogle Scholar
  107. 107.
    J. Delhay, Y. Bouvier, E. Therssen, J.D. Black, P. Desgroux, Appl. Phys. B 81, 181 (2005)ADSGoogle Scholar
  108. 108.
    F. Cignoli, S. Benecchi, G. Zizak, Appl. Opt. 33, 5778 (1994)ADSCrossRefGoogle Scholar
  109. 109.
    H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 27, 1613 (1998)Google Scholar
  110. 110.
    S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 26, 2277 (1996)Google Scholar
  111. 111.
    T.P. Jenkins, R.K. Hanson, Combust. Flame 126, 1669 (2001)Google Scholar
  112. 112.
    F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B (2006), DOI: 10.1007/s00340-006-2196-zGoogle Scholar
  113. 113.
    A. Eremin, E. Gurentsov, M. Hofmann, B. Kock, C. Schulz, Appl. Phys. B (2006), DOI: 10.1007/s00340-006-2199-9Google Scholar
  114. 114.
    M.Y. Choi, K.A. Jensen, Combust. Flame 112, 485 (1998)Google Scholar
  115. 115.
    K.P. Geigle, Y. Schneider-Kühnle, M. Tsurikov, R. Hadef, R. Lückerath, V. Krüger, W. Stricker, M. Aigner, Proc. Combust. Inst. 30, 1645 (2005)Google Scholar
  116. 116.
    A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid Interf. Sci. 229, 261 (2000)Google Scholar
  117. 117.
    A.V. Filippov, D.E. Rosner, J. Aerosol Sci. 30, S473 (1999)Google Scholar
  118. 118.
    D.R. Snelling, G.J. Smallwood, I.G. Campbell, J.E. Medlock, Ö.L. Gülder, Development and application of laser induced incandescence (LII) as a diagnostic for soot particulate measurements. In AGARD 90th Symp. Propulsion and Energetics Panel on Advanced Non-Intrusive Instrumentation for Propulsion Engines, Brussels, Belgium, 1997, 23.1Google Scholar
  119. 119.
    J. Hult, A. Omrane, A. Nygren, C.F. Kaminsky, B. Axelsson, R. Collin, P.-E. Bengtsson, M. Aldén, Exp. Fluids 33, 265 (2002)Google Scholar
  120. 120.
    M. Charwath, R. Suntz, H. Bockhorn, Appl. Phys. B (2006), DOI: 10.1007/s00340-006-2265-3Google Scholar
  121. 121.
    B. Bougie, L.C. Ganippa, A.P. van Vliet, W.L. Mee rts, N.J. Dam, J.J. ter Meulen, Combust. Flame, in press (2006), DOI: 10.1016/j.combustflame.2006.03.002Google Scholar
  122. 122.
    B. Bougie, L.C. Ganippa, N.J. Dam, J.J. ter Meulen, Appl. Phys. B (2006), DOI: 10.1007/s00340-006-2195-0Google Scholar
  123. 123.
    S. Dankers, A. Leipertz, Appl. Opt. 43, 3726 (2004)ADSGoogle Scholar
  124. 124.
    S.-A. Kuhlmann, J. Schumacher, J. Reimann, S. Will, in Int. Congr. Particle Technology (PARTEC 2004), Nürnberg, Germany (2004), paper No. 93Google Scholar
  125. 125.
    T. Lehre, Entwicklung einer berührungslosen in-situ Messmethode zur Bestimmung von Größenverteilungen nanoskaliger Teilchen, University of Karlsruhe (2005)Google Scholar
  126. 126.
    H. Bockhorn, F. Fetting, A. Heddrich, G. Wannemacher, Ber. Bunsenges. Phys. Chem. 91, 819 (1987)Google Scholar
  127. 127.
    J. Lahaye, G. Prado, in Particulate Carbon, Formation During Combustion, ed. by D.C. Siegla, G.W. Smith (Plenum, New York, 1981), p. 33Google Scholar
  128. 128.
    A.R. Jones, Prog. Energ. Combust. Sci. 25, 1 (1999)Google Scholar
  129. 129.
    C.M. Sorensen, Aerosol Sci. Technol. 35, 648 (2001)Google Scholar
  130. 130.
    A. Doicu, T. Wriedt, Opt. Commun. 190, 13 (2001)ADSGoogle Scholar
  131. 131.
    P. Yang, K.N. Liou, M.I. Mishchenko, B.-C. Gao, Appl. Opt. 39, 3727 (2000)ADSGoogle Scholar
  132. 132.
    B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994)ADSGoogle Scholar
  133. 133.
    D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Appl. Opt. 38, 2478 (1999)ADSGoogle Scholar
  134. 134.
    R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Combust. Flame 51, 203 (1983)Google Scholar
  135. 135.
    Ü.Ö. Köylu, C.S. McEnally, D.E. Rosner, L.D. Pfefferle, Combust. Flame 110, 494 (1997)Google Scholar
  136. 136.
    C.S. McEnally, Ü.Ö. Köylu, L.D. Pfefferle, D.E. Rosner, Combust. Flame 109, 701 (1997)Google Scholar
  137. 137.
    R.A. Dobbins, C.M. Megaridis, Langmuir 3, 254 (1987)Google Scholar
  138. 138.
    R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Combust. Flame 116, 291 (1999)Google Scholar
  139. 139.
    R. Puri, T.F. Richardson, R.J. Santoro, R.A. Dobbins, Combust. Flame 92, 320 (1993)Google Scholar
  140. 140.
    R.J. Santoro, J.H. Miller, Langmuir 3, 244 (1987)Google Scholar
  141. 141.
    R.A. Dobbins, R.A. Fletcher, H.-C. Chang, Combust. Flame 115, 285 (1998)Google Scholar
  142. 142.
    B.J. Stagg, T.T. Charalampopoulos, Combust. Flame 94, 381 (1993)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • C. Schulz
    • 1
  • B.F. Kock
    • 1
  • M. Hofmann
    • 1
  • H. Michelsen
    • 2
  • S. Will
    • 3
  • B. Bougie
    • 4
  • R. Suntz
    • 5
  • G. Smallwood
    • 6
  1. 1.IVGUniversität Duisburg-EssenDuisburgGermany
  2. 2.Combustion Research FacilitySandia National LaboratoriesLivermoreUSA
  3. 3.Technische ThermodynamikUniversität BremenBremenGermany
  4. 4.Applied Molecular Physics, Institute for Molecules and MaterialsRadboud University NijmegenNijmegenThe Netherlands
  5. 5.Institut für Technische Chemie und PolymerchemieUniversität KarlsruheKarlsruheGermany
  6. 6.National Research Council CanadaOttawaCanada

Personalised recommendations