Applied Physics B

, 84:175 | Cite as

Femtosecond optical investigation of electron–lattice interactions in an ensemble and a single metal nanoparticle

Article

Abstract

Electron–lattice energy exchange is investigated in an ensemble of silver nanoparticles of mean diameter 9 nm and in a single 30-nm particle using a femtosecond pump–probe technique. The dependences of the measured transient transmission change and of the electron energy loss kinetics on the excitation amplitude are compared to the results of numerical simulations of nonequilibrium electron relaxation and of the two-temperature model. The good agreement between the theoretical and experimental data indicates that, for the studied low particle density samples, hot-electron cooling is dominated by electron–lattice coupling in a nanoparticle both for weak and large electron heating with a minor influence of their surrounding environment (glass or polymer matrix).

References

  1. 1.
    J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Berlin, 1996)Google Scholar
  2. 2.
    For a review, see F. Vallée, C.R. Acad. Sci. Paris 2, 1469 (2001)Google Scholar
  3. 3.
    C. Voisin, N. Del Fatti, D. Christofilos, F. Vallée, J. Phys. Chem. B 105, 2264 (2001)CrossRefGoogle Scholar
  4. 4.
    N. Del Fatti, F. Vallée, C.R. Acad. Sci. Paris 3, 365 (2002)Google Scholar
  5. 5.
    S. Link, M.A. El-Sayed, J. Phys. Chem. B 103, 8410 (1999)CrossRefGoogle Scholar
  6. 6.
    F. Vallée, in Non-Equilibrium Dynamics of Semiconductors and Nanostructures, ed. by K.T. Tsen (CRC, New York, 2005), p. 101Google Scholar
  7. 7.
    S.I. Anisimov, B.L. Kapeliovitch, T.L. Perelman, Sov. Phys. JETP 39, 375 (1974)ADSGoogle Scholar
  8. 8.
    H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, G.A. Mourou, Phys. Rev. Lett. 58, 1212 (1987)CrossRefADSGoogle Scholar
  9. 9.
    S.D. Brorson, A. Kazeroonian, J.S. Modera, D.W. Face, T.K. Cheng, E.P. Ippen, M.S. Dresselhaus, G. Dresselhaus, Phys. Rev. Lett. 64, 2172 (1990)CrossRefADSGoogle Scholar
  10. 10.
    C.K. Sun, F. Vallée, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 50, 15337 (1994)CrossRefADSGoogle Scholar
  11. 11.
    R. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 51, 11433 (1995)CrossRefADSGoogle Scholar
  12. 12.
    N. Del Fatti, R. Bouffanais, F. Vallée, C. Flytzanis, Phys. Rev. Lett. 81, 922 (1998)CrossRefADSGoogle Scholar
  13. 13.
    N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, F. Vallée, Phys. Rev. B 61, 16956 (2000)CrossRefADSGoogle Scholar
  14. 14.
    T. Tokizaki, A. Nakamura, S. Kavelo, K. Uchida, S. Omi, H. Tanji, Y. Asahara, Appl. Phys. Lett. 65, 941 (1994)CrossRefADSGoogle Scholar
  15. 15.
    J.Y. Bigot, J.C. Merle, O. Cregut, A. Daunois, Phys. Rev. Lett. 75, 4702 (1995)CrossRefADSGoogle Scholar
  16. 16.
    J.Z. Zhang, Acc. Chem. Res. 30, 423 (1997)CrossRefGoogle Scholar
  17. 17.
    M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, H. Schmidt, Phys. Rev. Lett. 78, 2192 (1997)CrossRefADSGoogle Scholar
  18. 18.
    H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao, Phys. Rev. B 57, 11334 (1998)CrossRefADSGoogle Scholar
  19. 19.
    N. Del Fatti, F. Vallée, C. Flytzanis, Y. Hamanaka, A. Nakamura, Chem. Phys. 215, 251 (2000)Google Scholar
  20. 20.
    Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallée, C. Flytzanis, Appl. Phys. Lett. 75, 1712 (1999)CrossRefADSGoogle Scholar
  21. 21.
    J.H. Hodak, I. Martini, G.V. Hartland, J. Phys. Chem. B 102, 6958 (1998)CrossRefGoogle Scholar
  22. 22.
    C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, M. Broyer, Phys. Rev. Lett. 85, 2200 (2000)CrossRefADSGoogle Scholar
  23. 23.
    C. Voisin, D. Christofilos, P.A. Loukakos, N. Del Fatti, F. Vallé, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, Phys. Rev. B 69, 195416 (2004)CrossRefADSGoogle Scholar
  24. 24.
    A. Arbouet, C. Voisin, D. Christofilos, P. Langot, N. Del Fatti, F. Vallée, J. Lermé, G. Celep, E. Cottancin, M. Gaudry, M. Pellarin, M. Broyer, M. Maillard, M.P. Pileni, M. Treguer, Phys. Rev. Lett. 90, 177401 (2003)CrossRefADSGoogle Scholar
  25. 25.
    V. Halté, J.-Y. Bigot, B. Palpant, M. Broyer, B. Prével, A. Pérez, Appl. Phys. Lett. 75, 3799 (1999)CrossRefADSGoogle Scholar
  26. 26.
    J.H. Hodak, A. Henglein, G.V. Hartland, J. Chem. Phys. 111, 8613 (1999)CrossRefADSGoogle Scholar
  27. 27.
    J.H. Hodak, A. Henglein, G.V. Hartland, J. Chem. Phys. 112, 5942, (2000)Google Scholar
  28. 28.
    Y. Hamanaka, J. Kuwabata, I. Tanahashi, S. Omi, A. Nakamura, Phys. Rev. B 63, 104302 (2001)CrossRefADSGoogle Scholar
  29. 29.
    S.L. Westcott, R.D. Averitt, J.A. Wolfgang, P. Nordlander, N.J. Halas, J. Phys. Chem. B 105, 9913 (2001)CrossRefGoogle Scholar
  30. 30.
    H.J. Shin, I.-W. Hwang, Y.-N. Hwang, D. Kim, S.H. Han, J.-S. Lee, G. Cho, J. Phys. Chem. B 107, 4699 (2003)CrossRefGoogle Scholar
  31. 31.
    T. Itoh, T. Asahi, H. Masuhara, Appl. Phys. Lett. 79, 1667 (2001)CrossRefADSGoogle Scholar
  32. 32.
    O. Muskens, N. Del Fatti, F. Vallée, Nano Lett. 6, 552 (2006)CrossRefADSGoogle Scholar
  33. 33.
    C. Guillon, P. Langot, N. Del Fatti, F. Vallée, New J. Phys. 5, 13 (2003)CrossRefADSGoogle Scholar
  34. 34.
    M.I. Kaganov, I.M. Lifshitz, L.V. Tanatarov, Sov. Phys. JETP 4, 173, (1957)Google Scholar
  35. 35.
    P.B. Allen, Phys. Rev. Lett. 59, 1460 (1987)CrossRefADSGoogle Scholar
  36. 36.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)Google Scholar
  37. 37.
    K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A.J. Ikushima, T. Tokisaki, A. Nakamura, J. Opt. Soc. Am. B 11, 1236 (1994)CrossRefADSGoogle Scholar
  38. 38.
    A. Arbouet, D. Christofilos, N. Del Fatti, F. Vallé, J.-R. Huntzinger, L. Arnaud, P. Billaud, M. Broyer, Phys. Rev. Lett. 93, 127401 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Centre de Physique Moléculaire Optique et HertzienneCNRS and Université Bordeaux ITalenceFrance

Personalised recommendations