Applied Physics B

, Volume 84, Issue 1–2, pp 281–287 | Cite as

High-absorbing gradient multilayer coatings with silver nanoparticles

  • S. KachanEmail author
  • O. Stenzel
  • A. Ponyavina


We suggest an efficient way to enhance broadband visible light absorption in multilayer nanostructured systems formed by silver nanoparticle arrays. This approach is based on the explicit use of a gradient change in the parameters of the arrays (such as nanoparticle size or concentration). We analytically derive general conditions of the spectral characteristics of individual arrays which must be satisfied for the realization of highly-absorptive gradient multilayer nanostructured coatings. Two specific types of gradient coatings, (i) with the gradient of the size of the silver nanoparticles in the arrays and (ii) with the gradient of their surface concentration, are numerically studied in detail. The obvious advantages of the size-gradient coatings are revealed, in particular their total thickness of less than a wavelength. Multilayer coatings with a concurrent gradient of both concentration and mean particle size are fabricated from silver island films and their high and broadband absorption is demonstrated experimentally.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.M. Shalaev (Ed.), Optical Properties of Nanostructured Random Media (Springer, Berlin, 2002)CrossRefGoogle Scholar
  2. 2.
    E. Hutter, J.H. Fendler, Adv. Mater. 16, 1685 (2004)CrossRefGoogle Scholar
  3. 3.
    J. Schmitt, G. Decher, W.J. Dressik, S.L. Brandow, R.E. Geer, R. Shashidar, J.M. Calvert, Adv. Mater. 9, 61 (1997)CrossRefGoogle Scholar
  4. 4.
    T. Cassagneau, J.H. Fendler, J. Phys. Chem. B 103, 1789 (1999)CrossRefGoogle Scholar
  5. 5.
    M. Takakuwa, K. Baba, M. Miyagi, Opt. Lett. 21, 1195 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    K. Baba, K. Yamaki, M. Miyagi, Appl. Opt. 38, 2564 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    S.M. Kachan, A.N. Ponyavina, Proc. SPIE 4705, 88 (2002)CrossRefADSGoogle Scholar
  8. 8.
    A.D. Zamkovets, S.M. Kachan, A.N. Ponyavina, N.I. Silvanovich, Appl. Spectrosc. 70, 540 (2003)Google Scholar
  9. 9.
    H.B. Liao, W. Wen, G.K.L. Wong, J. Appl. Phys. 93, 4485 (2003)CrossRefADSGoogle Scholar
  10. 10.
    H. Liao, W. Lu, S. Yu, W. Wen, G.K.L. Wong, J. Opt. Soc. Am. B 22, 1923 (2005)CrossRefADSGoogle Scholar
  11. 11.
    T. Girardeau, S. Camelio, D. Babonneau, J. Toudert, A. Barranco, Thin Solid Films 455456, 313 (2004)CrossRefGoogle Scholar
  12. 12.
    J.-P. Barnes, N. Beer, A.K. Petford-Long, A. Suarez-Garcia, R. Serna, D. Hole, M. Weyland, P.A. Midgley, Nanotechnology 16, 718 (2005)CrossRefADSGoogle Scholar
  13. 13.
    A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978)zbMATHGoogle Scholar
  14. 14.
    A. Ponyavina, S. Kachan, N. Silvanovich, J. Opt. Soc. Am B 21, 1866 (2004)CrossRefADSGoogle Scholar
  15. 15.
    J. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979)Google Scholar
  16. 16.
    U. Kreibig, C.V. Fragstein, Z. Phys. 224, 307 (1969)CrossRefADSGoogle Scholar
  17. 17.
    M. Lax, Phys. Rev. 85, 621 (1952)CrossRefADSGoogle Scholar
  18. 18.
    K.M. Hong, J. Opt. Soc. Am. 70, 821 (1980)ADSCrossRefGoogle Scholar
  19. 19.
    C.C. Katsidis, D.I. Siapkas, Appl. Opt. 41, 3978 (2002)PubMedADSCrossRefGoogle Scholar
  20. 20.
    E.D. Palik (Ed.), Handbook of Optical Constants of Solids (Academic Press, New York, 1991)Google Scholar
  21. 21.
    M.J. Minot, J. Opt. Soc. Am. 66, 515 (1976)ADSCrossRefGoogle Scholar
  22. 22.
    H. Sankur, W.H. Southwell, Appl. Opt. 23, 2770 (1984)ADSCrossRefGoogle Scholar
  23. 23.
    M. Born, E. Wolf, Principles of Optics (MacMillan, New York, 1964)Google Scholar
  24. 24.
    S.M. Kachan, A.N. Ponyavina, J. Phys.: Condens. Matter 14, 103 (2002)CrossRefADSGoogle Scholar
  25. 25.
    P. Heger, O. Stenzel, N. Kaiser, Proc. SPIE 5250, 21 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Fraunhofer Institute of Applied Optics and Precision Engineering IOFJenaGermany

Personalised recommendations