Applied Physics B

, Volume 84, Issue 1–2, pp 247–251 | Cite as

Near-field optical chemical vapor deposition using Zn(acac)2 with a non-adiabatic photochemical process

  • T. KawazoeEmail author
  • K. Kobayashi
  • M. Ohtsu


We succeeded in depositing nanometric Zn dots using near-field optical chemical vapor deposition (NFO-CVD). Conventional optical CVD is based on an adiabatic photochemical process and requires UV light to excite molecules from the ground electronic state to the excited state for dissociation. By contrast, in near-field optical CVD (NFO-CVD), non-adiabatic photodissociation takes place, even with visible light, as a consequence of the steep spatial gradient of the optical power of an optical near field. This non-adiabatic process, which can be explained using the exciton–phonon polariton model, enables the photodissociation of optically inactive Zn(acac)2. We discuss experimental results using the exciton–phonon polariton model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Leonard, M. Krishnamurthy, C.M. Reaves, S.P. Denbaars, P.M. Petroff, Appl. Phys. Lett. 63, 3203 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    T. Tsutsui, K. Kawasaki, M. Mochizuki, T. Matsubara, Microelectron. Eng. 47, 135 (1999)CrossRefGoogle Scholar
  3. 3.
    S. Kohmoto, H. Nakamura, T. Ishikawa, K. Asakawa, Appl. Phys. Lett. 75, 3488 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    E. Kuramochi, J. Temmyo, T. Tamamura, H. Kamada, Appl. Phys. Lett. 71, 1655 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    R. Wiesendanger, Appl. Surf. Sci. 54, 271 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    V.V. Polonski, Y. Yamamoto, M. Kourogi, H. Fukuda, M. Ohtsu, J. Microsc. 194, 545 (1999)CrossRefGoogle Scholar
  7. 7.
    V.V. Polonski, Y. Yamamoto, J.D. White, M. Kourogi, M. Ohtsu, Jpn. J. Appl. Phys. 38, 826 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Yamamoto, M. Kourogi, M. Ohtsu, V. Polonski, G.H. Lee, Appl. Phys. Lett. 76, 2173 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    G.H. Lee, Y. Yamamoto, M. Kourogi, M. Ohtsu, Proc. SPIE 3791, 132 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    T. Kawazoe, Y. Yamamoto, M. Ohtsu, Appl. Phys. Lett. 79, 1184 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    J.G. Calvert, J.N. Patts Jr., Photochemistry (Wiley, New York, 1996)Google Scholar
  12. 12.
    T. Kawazoe, K. Kobayashi, S. Takubo, M. Ohtsu, J. Chem. Phys. 122, 024715 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    M. Ohtsu, Near-Field Nano/Atom Optics and Technology (Springer, Tokyo Berlin Heidelberg New York, 1998)CrossRefGoogle Scholar
  14. 14.
    K. Kobayashi, S. Sangu, H. Ito, M. Ohtsu, Phys. Rev. A 63, 0138061-1-9 (2001)Google Scholar
  15. 15.
    J.J. Hopfield, Phys. Rev. 112, 1555 (1958)ADSCrossRefGoogle Scholar
  16. 16.
    M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    T. Kawazoe, K. Kobayashi, M. Ohtsu, Appl. Phys. Lett. 86, 103102 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Japan Science and Technology AgencyTokyoJapan
  2. 2.Department of PhysicsTokyo Institute of TechnologyTokyoJapan
  3. 3.Department of Electronics EngineeringUniversity of TokyoTokyoJapan

Personalised recommendations