Advertisement

Applied Physics B

, Volume 84, Issue 1–2, pp 323–326 | Cite as

The study of optical characteristic of ZnSe nanocrystal

  • Shihua HuangEmail author
Article

Abstract

Nanocrystal ZnSe material was prepared in a triethylamine solvent using the modified solvothermal method in which potassium borohydride, a reducing reagent, is employed. Compared with the bulk ZnSe, the steady absorption edge and photoluminescence peak of nanocrystal ZnSe shift toward high energy. With the decrease of nanoparticle size, the probability of inelastic collision between electron and nanoparticle surface increases, which results in the enhancement of the intensity of electron–phonon coupling and the decrease of electron–phonon scattering time. In the lower temperature range (13–100 K), the transition probability between singlet state and triple state rapidly increases with the increase in temperature. With the further increase in temperature (100–292 K), the radiative recombination between singlet state and ground state is dominant. The competitive non-radiative recombination between singlet state and triple state is suppressed, therefore, the radiation decay time of singlet state changes slightly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Gaponik, I.L. Radtchenko, M.R. Gerstenberger, Y.A. Fedutik, G.B. Sukhorukov, A.L. Rogach, Nano Lett. 3, 369 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Milliron, A.P. Alivisatos, C. Pitois, C. Edder, J.M. Fréchet, Adv. Mater. 15, 58 (2003)CrossRefGoogle Scholar
  3. 3.
    J. Yang, C. Xue, S.H. Yu, J.H. Zeng, Y.T. Qian, Angew. Chem. 114, 4891 (2002)CrossRefGoogle Scholar
  4. 4.
    Q. Peng, Y.J. Dong, Y.D. Li, Angew. Chem. Int. Edit. 42, 3027 (2003)CrossRefGoogle Scholar
  5. 5.
    Y.C. Zhu, Y. Bando, Chem. Phys. Lett. 377, 367 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    X.T. Zhang, K.M. Ip, Z. Liu, Y.P. Leung, Q. Li, S.K. Hark, Appl. Phys. Lett. 84, 2641 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 404, 59 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    J. Zhu, Y. Koltypin, A. Gedanken, Chem. Mater. 12, 73 (2000)CrossRefGoogle Scholar
  9. 9.
    F.T. Quinlan, J. Kuther, W. Tremel, W. Knoll, S. Risbud, P. Stroeve, Langmuir 16, 4049 (2000)CrossRefGoogle Scholar
  10. 10.
    R.T. Lv, C.B. Cao, H.Z. Zhai, D.Z. Wang, S.Y. Liu, H.S. Zhu, Solid State Commun. 130, 241 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    K.B. Tang, Y.T. Qian, J.H. Zeng, X.G. Yang, Adv. Mater. 15, 448 (2003)CrossRefGoogle Scholar
  12. 12.
    Z.X. Deng, C. Wang, X.M. Sun, Y.D. Li, Inorg. Chem. 41, 869 (2002)CrossRefGoogle Scholar
  13. 13.
    N. Murasea, M. Gao, Mater. Lett. 58, 3898 (2004)CrossRefGoogle Scholar
  14. 14.
    A. Chergui, J.L. Deiss, J.B. Grun, J.L. Loison, M. Robin, R. Beserman, Appl. Surf. Sci. 9698, 874 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    V.J. Leppert, S. Mahamuni, N.R. Kumbhojkar, S.H. Risbud, Mater. Sci. Eng. B 52, 89 (1998)CrossRefGoogle Scholar
  16. 16.
    H. Luo, I.K. Furdyna, Semicond. Sci. Technol. 10, 1041 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    B.S. Whenrett, J. Cryst. Growth 159, 766 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    C. Wang, W.X. Zhang, X.F. Qian, X.M. Zhang, Y. Xie, Y.T. Qian, Mater. Chem. Phys. 60, 99 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    M. Lomascolo, A. Creta, G. Leo, L. Vassanelli, L. Manna, Appl. Phys. Lett. 82, 418 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    P. Reiss, G. Quemarda, S. Carayon, J. Bleuse, F. Chandezon, A. Pron, Mater. Chem. Phys. 84, 10 (2004)CrossRefGoogle Scholar
  21. 21.
    A. Othonos, J. Appl. Phys. 83, 1789 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    W. Fawcett, American Institute of Physics Handbook (McGraw-Hill, New York, 1972)Google Scholar
  23. 23.
    A. Kawabata, R. Kubo, J. Phys. Soc. Jpn. 21, 1765 (1966)ADSCrossRefGoogle Scholar
  24. 24.
    D.A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids (Plenum, New York, 1986)Google Scholar
  25. 25.
    N. Ookubo, Appl. Phys. 74, 6375 (1993)CrossRefGoogle Scholar
  26. 26.
    L. Pavesi, M. Ceschini, Phys. Rev. B 48, 17625 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    P.D.J. Calcott, K.J. Nash, L.T. Canham, M.J. Kane, D. Brumhead, J. Phys.: Condens. Matter 5, L91 (1993)ADSGoogle Scholar
  28. 28.
    A.G. Cullis, L.T. Canham P.D.J. Calcott, J. Appl. Phys. 82, 909 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    E. Martin, C. Delerue, G. Allan, M. Lannoo, Phys. Rev. B 50, 18258 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    A.L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris, M. Bawendi, Phys. Rev. B 54, 4843 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    K. Leung, K.B. Whaley, Phys. Rev. B 56, 7455 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Physics DepartmentZhejiang Normal UniversityZhejiangP.R. China

Personalised recommendations