Applied Physics B

, Volume 84, Issue 1–2, pp 61–68

Electromagnetic field correlations near a surface with a nonlocal optical response

Article

Abstract

The coherence length of the thermal electromagnetic field near a planar surface has a minimum value related to the nonlocal dielectric response of the material. We perform two model calculations of the electric energy density and the field’s degree of spatial coherence. Above a polar crystal, the lattice constant gives the minimum coherence length. It also gives the upper limit to the near field energy density, cutting off its 1/z3 divergence. Near an electron plasma described by the semiclassical Lindhard dielectric function, the corresponding length scale is fixed by plasma screening to the Thomas–Fermi length. The electron mean free path, however, sets a larger scale where significant deviations from the local description are visible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Planck, Verh. Dtsch. Phys. Ges. Berlin 2, 237 (1900)Google Scholar
  2. 2.
    S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Elements of Random Fields, Vol. 3, Principles of Statistical Radiophysics (Springer, Berlin, 1989)Google Scholar
  3. 3.
    F. Gori, D. Ambrosini, V. Bagini, Opt. Commun. 107, 331 (1994)CrossRefADSGoogle Scholar
  4. 4.
    R. Carminati, J.-J. Greffet, Phys. Rev. Lett. 82, 1660 (1999)CrossRefADSGoogle Scholar
  5. 5.
    C. Henkel, K. Joulain, R. Carminati, J.-J. Greffet, Opt. Commun. 186, 57 (2000)CrossRefADSGoogle Scholar
  6. 6.
    O.D. Stefano, S. Savasta, R. Girlanda, Phys. Rev. A 60, 1614 (1999)CrossRefADSGoogle Scholar
  7. 7.
    R.R. Chance, A. Prock, R. Silbey, In: Advances in Chemical Physics XXXVII, ed. by I. Prigogine, S.A. Rice (Wiley and Sons, New York, 1978) pp. 1–65Google Scholar
  8. 8.
    R.C. Dunn, Chem. Rev. 99, 2891 (1999)CrossRefGoogle Scholar
  9. 9.
    F. Chen, U. Mohideen, G.L. Klimchitskaya, V.M. Mostepanenko, Phys. Rev. Lett. 88, 101801 (2002)CrossRefADSGoogle Scholar
  10. 10.
    J.-B. Xu, K. Lauger, R. Moller, K. Dransfeld, I.H. Wilson, J. Appl. Phys. 76, 7209 (1994)CrossRefADSGoogle Scholar
  11. 11.
    J.B. Pendry, J. Phys.: Condens. Matter 11, 6621 (1999)CrossRefADSGoogle Scholar
  12. 12.
    J.-P. Mulet, K. Joulain, R. Carminati, J.-J. Greffet, Appl. Phys. Lett. 78, 2931 (2001)CrossRefADSGoogle Scholar
  13. 13.
    A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005)CrossRefADSGoogle Scholar
  14. 14.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (University Press, Cambridge, 1995)Google Scholar
  15. 15.
    K. Joulain, R. Carminati, J.-P. Mulet, J.-J. Greffet, Phys. Rev. B 68, 245405 (2003)CrossRefADSGoogle Scholar
  16. 16.
    T. Setälä, M. Kaivola, A.T. Friberg, Phys. Rev. Lett. 88, 123902 (2002)CrossRefADSGoogle Scholar
  17. 17.
    J. Ellis, A. Dogariu, S. Ponomarenko, E. Wolf, Opt. Lett. 29, 1536 (2004)CrossRefADSGoogle Scholar
  18. 18.
    C. Girard, C. Joachim, S. Gauthier, Rep. Prog. Phys. 63, 893 (2000)CrossRefADSGoogle Scholar
  19. 19.
    C. Henkel, Coherence Theory of Atomic de Broglie Waves and Electromagnetic Near Fields (Universitätsverlag, Potsdam, 2004)Google Scholar
  20. 20.
    S. Scheel, L. Knöll, D.-G. Welsch, Acta Phys. Slov. 49, 585 (1999)Google Scholar
  21. 21.
    D. Polder, M.V. Hove, Phys. Rev. B 4, 3303 (1971)CrossRefADSGoogle Scholar
  22. 22.
    C.H. Henry, R.F. Kazarinov, Rev. Mod. Phys. 68, 801 (1996)CrossRefADSGoogle Scholar
  23. 23.
    H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951)MATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    W. Eckhardt, Opt. Commun. 41, 305 (1982)CrossRefADSGoogle Scholar
  25. 25.
    K.L. Kliewer, R. Fuchs, Adv. Chem. Phys. 27, 355 (1974)CrossRefGoogle Scholar
  26. 26.
    J.M. Wylie, J.E. Sipe, Phys. Rev. A 30, 1185 (1984)CrossRefADSGoogle Scholar
  27. 27.
    M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, 9th ed. (Dover Publications Inc., New York, 1972)Google Scholar
  28. 28.
    E. Palik (Ed.), Handbook of Optical Constants of Solids (Academic, San Diego, 1985)Google Scholar
  29. 29.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976)Google Scholar
  30. 30.
    G.W. Ford, W.H. Weber, Phys. Rep. 113, 195 (1984)CrossRefADSGoogle Scholar
  31. 31.
    K.L. Kliewer, R. Fuchs, Phys. Rev. 172, 607 (1968)CrossRefADSGoogle Scholar
  32. 32.
    G.S. Agarwal, Phys. Rev. A 11, 230 (1975)CrossRefADSGoogle Scholar
  33. 33.
    I. Dorofeyev, H. Fuchs, J. Jersch, Phys. Rev. E 65, 026610 (2002)CrossRefADSGoogle Scholar
  34. 34.
    I.A. Larkin, M.I. Stockman, M. Achermann, V.I. Klimov, Phys. Rev. B 69, 121403(R) (2004)CrossRefADSGoogle Scholar
  35. 35.
    V.B. Svetovoy, R. Esquivel, Phys. Rev. E 72, 036113 (2005)CrossRefADSGoogle Scholar
  36. 36.
    B.E. Sernelius, Phys. Rev. B 71, 235114 (2005)CrossRefADSGoogle Scholar
  37. 37.
    P.J. Feibelman, Prog. Surf. Sci. 12, 287 (1982)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für PhysikUniversität PotsdamPotsdamGermany
  2. 2.Laboratoire d’Etudes ThermiquesEcole Nationale Supérieure de Mécanique AéronautiquePoitiersFrance

Personalised recommendations