Applied Physics B

, Volume 84, Issue 1–2, pp 61–68 | Cite as

Electromagnetic field correlations near a surface with a nonlocal optical response

  • C. HenkelEmail author
  • K. Joulain


The coherence length of the thermal electromagnetic field near a planar surface has a minimum value related to the nonlocal dielectric response of the material. We perform two model calculations of the electric energy density and the field’s degree of spatial coherence. Above a polar crystal, the lattice constant gives the minimum coherence length. It also gives the upper limit to the near field energy density, cutting off its 1/z3 divergence. Near an electron plasma described by the semiclassical Lindhard dielectric function, the corresponding length scale is fixed by plasma screening to the Thomas–Fermi length. The electron mean free path, however, sets a larger scale where significant deviations from the local description are visible.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Planck, Verh. Dtsch. Phys. Ges. Berlin 2, 237 (1900)Google Scholar
  2. 2.
    S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Elements of Random Fields, Vol. 3, Principles of Statistical Radiophysics (Springer, Berlin, 1989)zbMATHGoogle Scholar
  3. 3.
    F. Gori, D. Ambrosini, V. Bagini, Opt. Commun. 107, 331 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    R. Carminati, J.-J. Greffet, Phys. Rev. Lett. 82, 1660 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    C. Henkel, K. Joulain, R. Carminati, J.-J. Greffet, Opt. Commun. 186, 57 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    O.D. Stefano, S. Savasta, R. Girlanda, Phys. Rev. A 60, 1614 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    R.R. Chance, A. Prock, R. Silbey, In: Advances in Chemical Physics XXXVII, ed. by I. Prigogine, S.A. Rice (Wiley and Sons, New York, 1978) pp. 1–65Google Scholar
  8. 8.
    R.C. Dunn, Chem. Rev. 99, 2891 (1999)CrossRefGoogle Scholar
  9. 9.
    F. Chen, U. Mohideen, G.L. Klimchitskaya, V.M. Mostepanenko, Phys. Rev. Lett. 88, 101801 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    J.-B. Xu, K. Lauger, R. Moller, K. Dransfeld, I.H. Wilson, J. Appl. Phys. 76, 7209 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    J.B. Pendry, J. Phys.: Condens. Matter 11, 6621 (1999)ADSGoogle Scholar
  12. 12.
    J.-P. Mulet, K. Joulain, R. Carminati, J.-J. Greffet, Appl. Phys. Lett. 78, 2931 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (University Press, Cambridge, 1995)CrossRefGoogle Scholar
  15. 15.
    K. Joulain, R. Carminati, J.-P. Mulet, J.-J. Greffet, Phys. Rev. B 68, 245405 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    T. Setälä, M. Kaivola, A.T. Friberg, Phys. Rev. Lett. 88, 123902 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    J. Ellis, A. Dogariu, S. Ponomarenko, E. Wolf, Opt. Lett. 29, 1536 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    C. Girard, C. Joachim, S. Gauthier, Rep. Prog. Phys. 63, 893 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    C. Henkel, Coherence Theory of Atomic de Broglie Waves and Electromagnetic Near Fields (Universitätsverlag, Potsdam, 2004)Google Scholar
  20. 20.
    S. Scheel, L. Knöll, D.-G. Welsch, Acta Phys. Slov. 49, 585 (1999)Google Scholar
  21. 21.
    D. Polder, M.V. Hove, Phys. Rev. B 4, 3303 (1971)ADSCrossRefGoogle Scholar
  22. 22.
    C.H. Henry, R.F. Kazarinov, Rev. Mod. Phys. 68, 801 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951)ADSCrossRefGoogle Scholar
  24. 24.
    W. Eckhardt, Opt. Commun. 41, 305 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    K.L. Kliewer, R. Fuchs, Adv. Chem. Phys. 27, 355 (1974)Google Scholar
  26. 26.
    J.M. Wylie, J.E. Sipe, Phys. Rev. A 30, 1185 (1984)ADSCrossRefGoogle Scholar
  27. 27.
    M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, 9th ed. (Dover Publications Inc., New York, 1972)Google Scholar
  28. 28.
    E. Palik (Ed.), Handbook of Optical Constants of Solids (Academic, San Diego, 1985)Google Scholar
  29. 29.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976)zbMATHGoogle Scholar
  30. 30.
    G.W. Ford, W.H. Weber, Phys. Rep. 113, 195 (1984)ADSCrossRefGoogle Scholar
  31. 31.
    K.L. Kliewer, R. Fuchs, Phys. Rev. 172, 607 (1968)ADSCrossRefGoogle Scholar
  32. 32.
    G.S. Agarwal, Phys. Rev. A 11, 230 (1975)ADSCrossRefGoogle Scholar
  33. 33.
    I. Dorofeyev, H. Fuchs, J. Jersch, Phys. Rev. E 65, 026610 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    I.A. Larkin, M.I. Stockman, M. Achermann, V.I. Klimov, Phys. Rev. B 69, 121403(R) (2004)ADSCrossRefGoogle Scholar
  35. 35.
    V.B. Svetovoy, R. Esquivel, Phys. Rev. E 72, 036113 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    B.E. Sernelius, Phys. Rev. B 71, 235114 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    P.J. Feibelman, Prog. Surf. Sci. 12, 287 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für PhysikUniversität PotsdamPotsdamGermany
  2. 2.Laboratoire d’Etudes ThermiquesEcole Nationale Supérieure de Mécanique AéronautiquePoitiersFrance

Personalised recommendations