Advertisement

Applied Physics B

, Volume 84, Issue 1–2, pp 55–60 | Cite as

Accuracy of local field enhancement models: toward predictive models?

  • D. BarchiesiEmail author
  • B. Guizal
  • T. Grosges
Article

Abstract

An accurate computation of field enhancement in the vicinity of metallic nanostructures is fundamental for the prediction of different physical phenomena such as SERS or fluorescence, and also for the design of nanostructures for specific applications. Several numerical models have been developed and are used to compute the field enhancement. Nevertheless, its evaluation can be very tedious and boring due to the plasmon resonance increasing the intensity level, and to the discontinuity of the field near the material edges. The behavior of commonly used computational codes is investigated in order to identify the convergence problems, and to propose some solutions to control the accuracy in the computation of the field enhancement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Calander, M. Willander, J. Appl. Phys. 92, 4878 (2003)CrossRefADSGoogle Scholar
  2. 2.
    L. Novotny, R.X. Bian, X. Sunney Xie, Phys. Rev. Lett. 79, 645 (1997)CrossRefADSGoogle Scholar
  3. 3.
    J.P. Kottmann, O.J.F. Martin, D.R. Smith, S. Schultz, Opt. Express 6, 213 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    N.M. Lawandy, Appl. Phys. Lett. 85, 5040 (2004)CrossRefADSGoogle Scholar
  5. 5.
    P. Harscher, S. Amariand, R. Vahldieck, IEEE Trans. Microw. Theory Technol. 50, 433 (2002)CrossRefADSGoogle Scholar
  6. 6.
    D. Macías, D. Barchiesi, Opt. Lett. 30, 2557 (2005)CrossRefADSGoogle Scholar
  7. 7.
    D. Macías, A. Vial, D. Barchiesi, J. Opt. Soc. Am. A 21, 1465 (2004)CrossRefADSGoogle Scholar
  8. 8.
    A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, M.L. de la Chapelle, Phys. Rev. B 71, 85416 (2005)CrossRefADSGoogle Scholar
  9. 9.
    T. Grosges, A. Vial, D. Barchiesi, Opt. Express 13, 8483 (2005)CrossRefADSGoogle Scholar
  10. 10.
    R.G. Milner, D. Richards, J. Microsc. 202, 66 (2001)CrossRefPubMedMathSciNetGoogle Scholar
  11. 11.
    P. Leuchtmann, C. Fumeaux, D. Baumann, Adv. Radio Sci. 1, 87 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    A. Moreau, G. Granet, F. Baida, D. Van Labeke, Opt. Express 11, 1131 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    G. Granet, B. Guizal, J. Opt. Soc. Am. A 13, 1019 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    B. Guizal, D. Barchiesi, D. Felbacq, J. Opt. Soc. Am. A 12, 2274 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    A. Sentenac, J. Greffet, J. Opt. Soc. Am. A 9, 996 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    J.K. Kottmann, O.J.F. Martin, D.R. Smith, S. Schultz, J. Microsc. 202, 60 (2001)CrossRefPubMedMathSciNetGoogle Scholar
  17. 17.
    M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1992)Google Scholar
  18. 18.
    J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratory of Nanotechnology and Optical Instrumentation – Charles Delaunay’s Institute FRE CNRS 2848University of technology of TroyesTroyes cedexFrance
  2. 2.Optical Department of FEMTO UMR CNRS 6174University of Franche-ComtéBesançon cedexFrance

Personalised recommendations