Advertisement

Applied Physics B

, Volume 84, Issue 1–2, pp 357–363 | Cite as

Cathodoluminescence during epitaxy in Rb-ion irradiated α-quartz

  • S. G ¸asiorek
  • P.K. Sahoo
  • S. Dhar
  • K.P. LiebEmail author
  • K. Arstila
  • J. Keinonen
Article

Abstract

Implanting photoactive ions into quartz or silica is a simple and efficient way to tune the luminescence light used for various optoelectronic applications. However, such ion implantation damages or even destroys the crystalline order in quartz. We report here on cathodoluminescence of α-quartz after 175 keV Rb-ion implantation and epitaxial growth when annealing the samples in air or 18 O 2. In the cathodoluminescence spectra taken at room temperature, five bands were identified. In addition to three intrinsic bands at 2.40, 2.79, and 4.30 eV, which are related to the quartz and/or silica matrix, two strong violet sub-bands at 3.25 and 3.65 eV were observed, which appear to be strongly correlated with the presence of alkali ions and/or the degree of epitaxy of the matrix. Their properties and origin are discussed in relation to similar bands observed after Ba, Ge, and Na ion implantation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hosono, J. Non-Cryst. Solids 187, 457 (1995)CrossRefADSGoogle Scholar
  2. 2.
    L. Rebohle, J. von Borany, R.A. Yankov, W. Skorupa, I.E. Tyschenko, H. Förb, K. Leo, Appl. Phys. Lett. 71, 2809 (1997)CrossRefADSGoogle Scholar
  3. 3.
    L. Rebohle, J. von Borany, W. Skorupa, H. Förb, S. Niedermeier, Appl. Phys. Lett. 77, 969 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Y.Q. Wang, G.L. Kong, W.D. Chen, H.W. Diao, C.Y. Chen, S.B. Zhang, X.B. Liao, Appl. Phys. Lett. 81, 4174 (2002)CrossRefADSGoogle Scholar
  5. 5.
    H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, X. Yao, Appl. Phys. Lett. 81, 5144 (2002)CrossRefADSGoogle Scholar
  6. 6.
    A.V. Kabashin, M. Meunier, Appl. Phys. Lett. 82, 1619 (2003)CrossRefADSGoogle Scholar
  7. 7.
    F. Harbsmeier, W. Bolse, J. Appl. Phys. 83, 4049 (1998)CrossRefADSGoogle Scholar
  8. 8.
    G. Devaud, C. Hayzelden, M.J. Aziz, D. Turnbull, J. Non-Cryst. Solids 134, 129 (1991)CrossRefADSGoogle Scholar
  9. 9.
    S. Dhar, W. Bolse, K.P. Lieb, J. Appl. Phys. 85, 3120 (1999)CrossRefADSGoogle Scholar
  10. 10.
    S. Dhar, S. Gasiorek, P.K. Sahoo, U. Vetter, H. Hofsaess, V.N. Kulkarni, K.P. Lieb, Appl. Phys. Lett. 85, 1341 (2004)CrossRefADSGoogle Scholar
  11. 11.
    J. Appl. Phys. 97, 014910 (2005)Google Scholar
  12. 12.
    P.K. Sahoo, S. Dhar, S. Gasiorek, K.P. Lieb, Nucl. Instrum. Methods B 216, 324 (2004)CrossRefADSGoogle Scholar
  13. 13.
    J. Appl. Phys. 96, 1392 (2004)Google Scholar
  14. 14.
    S. Gasiorek, S. Dhar, K.P. Lieb, P. Schaaf, Appl. Surf. Sci. 247, 396 (2005)CrossRefADSGoogle Scholar
  15. 15.
    P.K. Sahoo, S. Gasiorek, S. Dhar, K.P. Lieb, P. Schaaf, Appl. Surf. Sci., in pressGoogle Scholar
  16. 16.
    F. Roccaforte, W. Bolse, K.P. Lieb, Appl. Phys. Lett. 73, 1349 (1998)CrossRefADSGoogle Scholar
  17. 17.
    J. Appl. Phys. 89, 3611 (2001)Google Scholar
  18. 18.
    M. Gustafsson, F. Roccaforte, J. Keinonen, W. Bolse, L. Ziegeler, K.P. Lieb, Phys. Rev. B 61, 3327 (2000)CrossRefADSGoogle Scholar
  19. 19.
    S. Gasiorek, S. Dhar, K.P. Lieb, Nucl. Instrum. Methods B 193, 283 (2002)CrossRefADSGoogle Scholar
  20. 20.
    S. Gasiorek, S. Dhar, J. Keinonen, K.P. Lieb, T. Sajavaara, Nucl. Instrum. Methods B 216, 62 (2004)CrossRefADSGoogle Scholar
  21. 21.
    S. Gasiorek, S. Dhar, K.P. Lieb, T. Sajavaara, J. Keinonen, J. Appl. Phys. 95, 4705 (2004)CrossRefADSGoogle Scholar
  22. 22.
    S. Gasiorek, Doctoral Thesis (Universität Göttingen, 2004)Google Scholar
  23. 23.
    S. Dhar, S. Gasiorek, M. Lang, K.P. Lieb, J. Keinonen, T. Sajavaara, Surf. Coat. Technol. 158, 436 (2002)CrossRefGoogle Scholar
  24. 24.
    S. Gasiorek, P.K. Sahoo, S. Dhar, K.P. Lieb, T. Sajavaara, J. Keinonen, J. Non-Cryst. Solids, in pressGoogle Scholar
  25. 25.
    P.K. Sahoo, S. Gasiorek, K.P. Lieb, K. Arstila, J. Keinonen, Appl. Phys. Lett. 87, 021105 (2005)CrossRefADSGoogle Scholar
  26. 26.
    P.K. Sahoo, S. Gasiorek, K.P. Lieb, Nucl. Instrum. Methods B 240, 188 (2005)CrossRefADSGoogle Scholar
  27. 27.
    K.P. Lieb, in Encyclopedia on Nanoscience and Nanotechnology, ed. by H.S. Nalwa (American Scientific, 2004) Vol. 3, pp. 233–251Google Scholar
  28. 28.
    M. Uhrmacher, K. Pampus, F.J. Bergmeister, D. Purschke, K.P. Lieb, Nucl. Instrum. Methods B 9, 234 (1985)CrossRefADSGoogle Scholar
  29. 29.
    J. Jokinen, J. Keinonen, P. Tikkanen, A. Kuronen, T. Ahlgren, K. Nordlund, Nucl. Instrum. Methods B 119, 533 (1996)CrossRefADSGoogle Scholar
  30. 30.
    K. Arstila, T. Sajavaara, J. Keinonen, Nucl. Instrum. Methods B 174, 163 (2001)CrossRefADSGoogle Scholar
  31. 31.
    K. Arstila, J.A. Knapp, K. Nordlund, B.L. Doyle, Nucl. Instrum. Methods B 219, 1058 (2004)CrossRefADSGoogle Scholar
  32. 32.
    M.A. Stevens-Kalceff, Phys. Rev. B 57, 5674 (1998)CrossRefADSGoogle Scholar
  33. 33.
    M.A. Stevens-Kalceff, Phys. Rev. Lett. 88, 3137 (2000)CrossRefADSGoogle Scholar
  34. 34.
    M.A. Stevens-Kalceff, M.R. Philips, Phys. Rev. B 52, 3122 (1995)CrossRefADSGoogle Scholar
  35. 35.
    W.H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932)CrossRefGoogle Scholar
  36. 36.
    F. Spaepen, D. Turnbull, AIP Conf. Proc. 50, 73 (1979)ADSCrossRefGoogle Scholar
  37. 37.
    V.J. Fratello, J.F. Hays, D. Turnbull, J. Appl. Phys. 51, 4718 (1980)CrossRefADSGoogle Scholar
  38. 38.
    V.J. Fratello, J.F. Hays, F. Spaepen, D. Turnbull, J. Appl. Phys. 51, 6160 (1980)CrossRefADSGoogle Scholar
  39. 39.
    F. Roccaforte, F. Harbsmeier, S. Dhar, K.P. Lieb, Appl. Phys. Lett. 76, 3709 (2000)CrossRefADSGoogle Scholar
  40. 40.
    P.K. Gupta, A.R. Cooper, J. Non-Cryst. Solids 123, 14 (1990)CrossRefADSGoogle Scholar
  41. 41.
    G.W. Arnold, P. Mazzoldi, in Ion Beam Modifications of Insulators, ed. by P. Mazzoldi, G.W. Arnold (Elsevier, Amsterdam, 1987) pp. 195–222Google Scholar
  42. 42.
    G.W. Arnold, Nucl. Instrum. Methods B 65, 213 (1992)CrossRefADSGoogle Scholar
  43. 43.
    L.W. Hobbs, Nucl. Instrum. Methods B 91, 30 (1994)CrossRefADSGoogle Scholar
  44. 44.
    L.W. Hobbs, J. Non-Cryst. Solids 192, 79 (1995)CrossRefADSGoogle Scholar
  45. 45.
    H.S. Bae, T.G. Kim, C.N. Whang, S. Im, J.S. Yun, J.H. Song, J. Appl. Phys. 91, 4078 (2002)CrossRefADSGoogle Scholar
  46. 46.
    D.E. Day, J. Non-Cryst. Solids 21, 343 (1976)CrossRefADSGoogle Scholar
  47. 47.
    G.H. Frischat, Phys. Chem. Glass. 25, 110 (1984)Google Scholar
  48. 48.
    M.D. Ingram, Phys. Chem. Glass. 28, 215 (1987)Google Scholar
  49. 49.
    M.D. Ingram, Philos. Mag. B 60, 739 (1989)ADSCrossRefGoogle Scholar
  50. 50.
    P. Jund, W. Kob, R. Julien, Phys. Rev. B 64, 134303 (2001)CrossRefADSGoogle Scholar
  51. 51.
    J. Horbach, W. Kob, K. Binder, Phys. Rev. Lett. 88, 125502 (2002)CrossRefPubMedADSGoogle Scholar
  52. 52.
    J. Keinonen, S. Gasiorek, P.K. Sahoo, S. Dhar, K.P. Lieb, Appl. Phys. Lett., submittedGoogle Scholar
  53. 53.
    L. Skuja, B. Güttler, D. Schiel, A.R. Silin, Phys. Rev. B 58, 4296 (1998)CrossRefGoogle Scholar
  54. 54.
    J. Götze, W. Zimmerle, Quartz and Silica as Guide to Provenance in Sediments and Sedimentary Rocks, Sedimentary Geology (E. Schweizerbart’sche Verlagsbuchhdl., Nägele & Obermiller, Stuttgart, 2000) p. 21Google Scholar
  55. 55.
    L.N. Skuja, W. Entzian, Phys. Stat. Solidi A 96, 191 (1986)ADSCrossRefGoogle Scholar
  56. 56.
    L.N. Skuja, J. Non-Cryst. Solids 239, 16 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • S. G ¸asiorek
    • 1
  • P.K. Sahoo
    • 1
  • S. Dhar
    • 1
  • K.P. Lieb
    • 1
    Email author
  • K. Arstila
    • 2
  • J. Keinonen
    • 2
  1. 1.II. Physikalisches InstitutUniversität GöttingenGöttingenGermany
  2. 2.Accelerator LaboratoryUniversity of HelsinkiHelsinkiFinland

Personalised recommendations