Advertisement

Applied Physics B

, Volume 84, Issue 1–2, pp 35–41 | Cite as

Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system

  • P. NordlanderEmail author
  • F. Le
Article

Abstract

We investigate the plasmonic structure of a metallic nanoparticle near a metallic thin film. We show that in the thin film limit, a virtual plasmon resonance composed of delocalized thin film plasmons is induced. We investigate how the physical properties of the virtual state depend on polarization, film thickness and nanoparticle-film separation. We show that the electromagnetic field enhancements associated with the virtual plasmon resonance are large, suggesting applications of metallic nanoparticle/thin film systems as substrates for surface enhanced spectroscopies and surface enhanced scanning probe microscopies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Oldenburg, R.D. Averitt, S. Westcott, N.J. Halas, Chem. Phys. Lett. 288, 243 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    S. Gresillon, L. Aigouy, A.C. Boccara, J.C. Rivoal, X. Quelin, C. Demarest, P. Gadenne, V.A. Shubin, A.K. Sarychev, V.M. Shalaev, Phys. Rev. Lett. 82, 4520 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    R. Jin, Y. Wei, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng, Science 294, 1901 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    M.I. Stockman, S.V. Faleev, D.J. Bergman, Phys. Rev. Lett. 87, 167401 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    J. Bosbach, C. Hendrich, F. Stietz, T. Vartanyan, F. Trager, Phys. Rev. Lett. 89, 257404 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    J. Aizpurua, P. Hanarp, D.S. Sutherland, M. Kall, G.W. Bryant, F.J.G. de Abajo, Phys. Rev. Lett. 90, 57401 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    C.J. Murphy, T.K. San, C.J. Orendorff, J.X. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B 109, 13857 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Nie, S.R. Emory, Science 275, 1102 (1997)CrossRefGoogle Scholar
  9. 9.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    A.M. Michaels, M. Nirmal, L.E. Brus, J. Am. Chem. Soc. 121, 9932 (1999)CrossRefGoogle Scholar
  11. 11.
    H. Xu, E.J. Bjerneld, M. Kall, L. Borjesson, Phys. Rev. Lett. 83, 4357 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    G.C. Schatz, R.P.V. Duyne, Electromagnetic Mechanism of Surface-Enhanced Spectroscopy, In Handbook of Vibrational Spectroscopy, ed. by J.M. Chalmers, P.R. Griffiths (Wiley, Chichester, 2002), p. 1Google Scholar
  13. 13.
    M. Moskovits, D.H. Jeong, Chem. Phys. Lett. 397, 91 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Wang, S. Pan, T.D. Krauss, H. Dui, L.J. Rothberg, Proc. Nat. Acad. Sci. 100, 8638 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    J.B. Jackson, N.J. Halas, Proc. Nat. Acad. Sci. USA 101, 17930 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    R. Aroca, B. Price, J. Phys. Chem. B 101, 6537 (1997)CrossRefGoogle Scholar
  17. 17.
    M. Osawa, Top. Appl. Phys. 81, 163 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    M. Futamata, L. Luo, C. Nishihara, Surf. Sci. 590, 196 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    F. Le, N.Z. Lwin, J.M. Steele, M. Kall, N.J. Halas, P. Nordlander, Nano Lett. 5, 2009 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    E. Prodan, P. Nordlander, J. Chem. Phys. 120, 5444 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    D.W. Brandl, C. Oubre, P. Nordlander, J. Chem. Phys. 123, 024701 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    C. Oubre, P. Nordlander, J. Phys. Chem. B 109, 10042 (2005)CrossRefGoogle Scholar
  24. 24.
    P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Nano Lett. 4, 899 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    P. Nordlander, E. Prodan, Nano Lett. 4, 2209 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech, Norwood, MA 02062, 2000)Google Scholar
  27. 27.
    C. Oubre, P. Nordlander, J. Phys. Chem. B 108, 17740 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, M.S. 61, Laboratory for NanophotonicsRice UniversityHoustonUSA

Personalised recommendations