Advertisement

Applied Physics B

, Volume 84, Issue 1–2, pp 111–115 | Cite as

Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method

  • A.-S. Grimault
  • A. VialEmail author
  • M. Lamy de la Chapelle
Article

Abstract

We study the localized surface plasmon resonance (LSPR) and the surface-enhanced Raman scattering (SERS) of arrays of gold cylindrical and ellipsoidal nanoparticles with different diameters or major axes. The LSPR and SERS gains are calculated with the three dimensional Finite-Difference Time-Domain method using the Drude–Lorentz dispersion model. We find that the maximum of the extinction spectrum and the average SERS gain of each investigated nanostructures are shifted whatever their size and their shape.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Anderson, A. Hartshuh, L. Novotny, Mater. Today 5, 50 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Nie, S.R. Emory, Science 275, 1102 (1997)CrossRefPubMedGoogle Scholar
  3. 3.
    K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M. Feld, Phys. Rev. Lett. 78, 1667 (1996)CrossRefADSGoogle Scholar
  4. 4.
    A. Wokaun, Solid State Phys. 38, 223 (1984)CrossRefGoogle Scholar
  5. 5.
    G.C. Schatz, R.P. Van Duyne, Electromagnetic Mechanism of Surface Enhanced Raman Spectroscopy. Handbook of Vibrational Spectroscopy, ed. by J.M. Chalmers, P.R. Griffiths (Wiley, New York, 2002), Vol. 1, p. 759Google Scholar
  6. 6.
    A. Otto, J. Electron. Spectrosc. Relat. Phenom. 29, 329 (1983)CrossRefGoogle Scholar
  7. 7.
    A. Kudelski, J. Bukowska, Surf. Sci. 368, 396 (1996)CrossRefADSGoogle Scholar
  8. 8.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988)CrossRefGoogle Scholar
  9. 9.
    P.F. Liao, M.B. Stern, Opt. Lett. 7, 483 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    N. Félidj, J. Aubard, G. Lévi, Phys. Rev. B 65, 075419 (2002)CrossRefADSGoogle Scholar
  11. 11.
    D.A. Weitz, S. Garoff, T.J. Gramila, Opt. Lett. 7, 168 (1982)ADSCrossRefGoogle Scholar
  12. 12.
    J. Grand, S. Kostcheev, J.-L. Bijeon, M. Lamy de la Chapelle, P.-M. Adam, A. Rumyantseva, G. Lerondel, P. Royer, Synth. Met. 139, 621 (2003)CrossRefGoogle Scholar
  13. 13.
    N. Félidj, J. Aubard, G. Lévi, J.R. Krenn, A. Hohenau, G. Schider, A. Leitner, F.R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003)CrossRefADSGoogle Scholar
  14. 14.
    J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, P. Royer, Phys. Rev. B 72, 033407 (2005)CrossRefADSGoogle Scholar
  15. 15.
    C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 107, 7426 (2003)CrossRefGoogle Scholar
  16. 16.
    A.D. McFarland, M.A. Young, J.A. Dieringer, R.P. Van Duyne, J. Phys. Chem. B 109, 11279 (2005)CrossRefGoogle Scholar
  17. 17.
    M. Micic, N. Klymyshyn, Y.D. Suh, H.P. Lu, J. Phys. Chem. B 107, 1574 (2003)CrossRefGoogle Scholar
  18. 18.
    L. Zhao, K. Lance Kelly, G.C. Shatz, J. Phys. Chem. B 107, 7343 (2003)CrossRefGoogle Scholar
  19. 19.
    A. Taflove, S. Hagness, Computational electrodynamics: The Finite-Difference Time Domain Method (Artech House, Boston, 2000)zbMATHGoogle Scholar
  20. 20.
    K. Kunz, R. Luebbers, The finite-difference time-domain method for electromagnetics (CRC Press, Boca Raton, FL, 1993)Google Scholar
  21. 21.
    T.R. Jensen, M. Duval Malinsky, C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000)CrossRefGoogle Scholar
  22. 22.
    T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spickl, J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998)CrossRefADSGoogle Scholar
  23. 23.
    S. Zou, N. Janel, G.C. Shatz, J. Chem. Phys. 120, 10871 (2004)CrossRefPubMedADSGoogle Scholar
  24. 24.
    A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, M. Lamy de la Chapelle, Phys. Rev. B 71, 085416 (2005)CrossRefADSGoogle Scholar
  25. 25.
    W.-Y. Yang, J. Hulteen, G. Schatz, R.P. Van Duyne, J. Chem. Phys. 104, 4313 (1996)CrossRefADSGoogle Scholar
  26. 26.
    G. Laurent, N. Félidj, J. Aubard, G. Lévi, Phys. Rev. B 71, 045430 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A.-S. Grimault
    • 1
  • A. Vial
    • 1
    Email author
  • M. Lamy de la Chapelle
    • 1
  1. 1.Laboratoire de Nanotechnologie et d’Instrumentation OptiqueInstitut Charles Delaunay – Université de technologie de Troyes – CNRS FRE 2848Troyes CedexFrance

Personalised recommendations