Applied Physics B

, Volume 84, Issue 1–2, pp 117–120 | Cite as

Spectroscopy of vibrational modes in metal nanoshells

  • A.S. Kirakosyan
  • T.V. ShahbazyanEmail author


In this work we study the spectrum of vibrational modes in metal nanoparticles with a dielectric core. Vibrational modes are excited by the rapid heating of the particle lattice that takes place after laser excitation, and can be monitored by means of pump-probe spectroscopy as coherent oscillations of transient optical spectra. In nanoshells, the presence of two metal surfaces results in a substantially different energy spectrum of acoustic vibrations than for solid particles. We calculated the energy spectrum as well as the damping of nanoshell vibrational modes. The oscillator strength of the fundamental breathing mode is larger than that in solid nanoparticles. At the same time, in very thin nanoshells, the fundamental mode is overdamped due to instantaneous energy transfer to the surrounding medium.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, C. Flytzanis, J. Chem. Phys. 110, 11484 (1999)CrossRefADSGoogle Scholar
  2. 2.
    J.S. Hodak, A. Henglein, G.V. Hartland, J. Chem. Phys. 111, 8613 (1999)CrossRefADSGoogle Scholar
  3. 3.
    H. Portales, L. Saviot, E. Duval, M. Fujii, S. Hayashi, N. Del Fatti, F. Vallée, J. Chem. Phys. 115, 3444 (2001)CrossRefADSGoogle Scholar
  4. 4.
    W. Huang, W. Qian, M.A. El-Sayed, Nano Lett. 4, 1741 (2004)CrossRefADSGoogle Scholar
  5. 5.
    J.H. Hodak, A. Henglein, G.V. Hartland, J. Phys. Chem. B 104, 5053 (2000)CrossRefGoogle Scholar
  6. 6.
    J.E. Sader, G.V. Hartland, P. Mulvaney, J. Phys. Chem. B 106, 1399 (2000)CrossRefGoogle Scholar
  7. 7.
    C. Voisin, N. Del Fatti, D. Christofilos, F. Vallée, J. Phys. Chem. B 105, 2264 (2001)CrossRefGoogle Scholar
  8. 8.
    V.A. Dubrovskiy, V.S. Morochnik, Izv. Earth Phys. 17, 494 (1981)Google Scholar
  9. 9.
    R.D. Averitt, D. Sarkar, N.J. Halas, Phys. Rev. Lett. 78, 4217 (1997)CrossRefADSGoogle Scholar
  10. 10.
    A.L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Addison-Wesley, Reading, 1987)zbMATHGoogle Scholar
  12. 12.
    A.E.H. Love, A Treatise on Mathematical Theory of Elasticity (Dover, New York, 1944)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsJackson State UniversityJacksonUSA
  2. 2.Department of PhysicsYerevan State UniversityYerevanArmenia

Personalised recommendations