Advertisement

Applied Physics B

, 84:239 | Cite as

Transmission enhancement of Ag nanoparticle aggregates in azo-polymer films

  • D. Zhang
  • P. Wang
  • J. Zhou
  • Y. Sun
  • X. Jiao
  • Y. Deng
  • H. Ming
  • Q. Zhang
  • Z. Zhang
Article

Abstract

Ag nanoparticle aggregates in azo-polymer films were investigated by using scanning near-field optical microscopy. The near-field optical images show that transmission enhancement happened for these metal aggregates. Far-field experiment results show that the photo-induced isomeration speed of the azo-polymer molecules was enhanced when doped with Ag nanoparticle aggregates. The mechanism of the transmittance enhancement and speed enhancement was discussed from the viewpoint of the excitation of the surface plasmon of Ag nanoparticle aggregates.

Keywords

Silver Nanoparticles Surface Plasmon Resonance Wavelength Reading Beam Transmission Enhancement Photoinduced Birefringence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Ishkawa, T. Okudo, J. Appl. Phys. 98, 043502 (2005)CrossRefADSGoogle Scholar
  2. 2.
    S.K. Lim, K.J. Chung, C.K. Kim, J. Appl. Phys. 98, 084309 (2005)CrossRefADSGoogle Scholar
  3. 3.
    U. Hohenester, J. Krenn, Phys. Rev. B 72, 195425 (2005)CrossRefADSGoogle Scholar
  4. 4.
    A.V. Zayats, I.I. Smolyaninov, J. Opt. A 5, S16 (2003)ADSGoogle Scholar
  5. 5.
    G. Laurent, N. Felidj, J. Aubard, J. Chem. Phys. 122, 011102-1 (2005)CrossRefADSGoogle Scholar
  6. 6.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)CrossRefADSGoogle Scholar
  7. 7.
    D.A. Genov, A.K. Sarychev, Nano Lett. 4, 153 (2004)CrossRefADSGoogle Scholar
  8. 8.
    S.A. Maier, P.G. Kik, H.A. Atwater, Nat. Mater. 2, 229 (2003)CrossRefADSGoogle Scholar
  9. 9.
    G.P. Wiederrecht, Eur. Phys. J. Appl. Phys. 28, 3 (2004)CrossRefADSGoogle Scholar
  10. 10.
    H. Eliza, H.F. Janos, Adv. Mater. 16, 1685 (2004)CrossRefGoogle Scholar
  11. 11.
    K.L. Kelly, E. Coronado, L.L. Zhao, J. Phys. Chem. B 107, 668 (2003)CrossRefGoogle Scholar
  12. 12.
    T.W. Ebbesen, H.J. Lezec, Nature 391, 667 (1998)CrossRefADSGoogle Scholar
  13. 13.
    E.X. Jin, X.F. Xu, Appl. Phys. Lett. 96, 111106 (2005)CrossRefADSGoogle Scholar
  14. 14.
    T. Todorov, L. Nikolova, N. Tomova, Opt. Quantum. Electron 13, 209 (1981)CrossRefADSGoogle Scholar
  15. 15.
    J. Yang, H. Ming, J.Y. Zhang, Chin. Phys. Lett. 20, 1826 (2003)CrossRefADSGoogle Scholar
  16. 16.
    S. Link, M.A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999)CrossRefGoogle Scholar
  17. 17.
    J.J. Mock, M. Barbic, D.R. Smith, J. Chem. Phys. 116, 6755 (2002)CrossRefADSGoogle Scholar
  18. 18.
    H. Wang, Y.P. Huang, Z.G. Liu, Appl. Phys. Lett. 82, 3394 (2003)CrossRefADSGoogle Scholar
  19. 19.
    A. Mazzulla, P. Pagliusi, C. Provenzano, Appl. Phys. Lett. 85, 2505 (2004)CrossRefADSGoogle Scholar
  20. 20.
    R. Riehn, A. Charas, J. Morgado, Appl. Phys. Lett. 82, 526 (2003)CrossRefADSGoogle Scholar
  21. 21.
    Y. Ohdaira, S. Hoshiyama, T. Kawakami, Appl. Phys. Lett. 86, 051102 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • D. Zhang
    • 1
  • P. Wang
    • 1
  • J. Zhou
    • 2
  • Y. Sun
    • 2
  • X. Jiao
    • 1
  • Y. Deng
    • 1
  • H. Ming
    • 1
  • Q. Zhang
    • 2
  • Z. Zhang
    • 3
  1. 1.Department of PhysicsUniversity of Science and Technology of ChinaHefeiP.R. China
  2. 2.Department of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefeiP.R. China
  3. 3.Laboratory of Optical Physics, Institute of PhysicsChinese Academy of ScienceBeijingP.R. China

Personalised recommendations