Advertisement

Applied Physics B

, Volume 84, Issue 1–2, pp 29–34 | Cite as

Splitting of a surface plasmon polariton beam by chains of nanoparticles

  • A.B. EvlyukhinEmail author
  • S.I. Bozhevolnyi
  • A.L. Stepanov
  • J.R. Krenn
Article

Abstract

The operation of a micro-optical beam splitter for surface plasmon polaritons (SPP’s) formed by lined up scatterers is modeled and studied in the framework of a vectorial dipolar approach for multiple SPP scattering by equivalent non-spherical nanoparticles. It is shown that the inclusion of anisotropic polarizability of individual scatterer in the vectorial dipolar model of multiple SPP scattering allows one to obtain, in some cases, quantitative agreement between modeling and experimental results. As an example, we apply this approach to model an SPP beam-splitter formed by a chain of spheroidal particles. The dependencies of the splitting efficiency on the shape of particles, the incidence angle and the waist of an incident SPP Gaussian beam are considered. It is found that the efficiency is very sensitive to the shape of scatterers and the angle of SPP beam incidence. Comparison of numerical results with experimental data shows good agreement with respect to the particle shape and incident angular dependences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Raether: Surface Plasmons, Springer Tracts in Modern Physics, Vol. 111 (Springer, Berlin, 1988)Google Scholar
  2. 2.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)CrossRefPubMedADSGoogle Scholar
  3. 3.
    I.I. Smolyaninov, D.L. Mazzoni, C.C. Davis, Phys. Rev. Lett. 77, 1601 (1996)CrossRefGoogle Scholar
  4. 4.
    I.I. Smolyaninov, D.L. Mazzoni, J. Mait, C.C. Davis, Phys. Rev. B 56, 3877 (1997)Google Scholar
  5. 5.
    J. Weeber, A. Dereux, C. Girard, J.R. Krenn, J.P. Goudonnet, Phys. Rev. B 60, 9061 (1999)CrossRefADSGoogle Scholar
  6. 6.
    P. Berini, Phys. Rev. B 61, 10484 (2000)CrossRefADSGoogle Scholar
  7. 7.
    B. Lamprecht, J.R. Krenn, G. Schider, H. Ditbacher, M. Salermo, N. Felidj, A. Leatner, F.R. Aussenegg, Appl. Phys. Lett. 79, 51 (2001)CrossRefADSGoogle Scholar
  8. 8.
    J.C. Weeber, J.R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, J.P. Goudonnet, Phys. Rev. B 64, 045411 (2001)CrossRefADSGoogle Scholar
  9. 9.
    J.C. Weeber, Y. Lacroute, A. Dereux, Phys. Rev. B 68, 115401 (2003)CrossRefADSGoogle Scholar
  10. 10.
    J.C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M.U. Gonzalez, A.-L. Baudrion, Phys. Rev. B 70, 235406 (2004)CrossRefADSGoogle Scholar
  11. 11.
    S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, T.W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005)Google Scholar
  12. 12.
    S. Bozhevolnyi, V. Volkov, Opt. Commun. 198, 241 (2001)CrossRefADSGoogle Scholar
  13. 13.
    T. Søndergaard, S.I. Bozhevolnyi, Phys. Rev. B 67, 165405 (2003)CrossRefADSGoogle Scholar
  14. 14.
    S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, J.M. Hvam, Phys. Rev. Lett. 86, 3008 (2001)CrossRefPubMedADSGoogle Scholar
  15. 15.
    S.I. Bozhevolnyi, V.S. Volkov, K. Leosson, A. Boltasseva, Appl. Phys. Lett. 79, 1076 (2001)CrossRefADSGoogle Scholar
  16. 16.
    V.S. Volkov, S.I. Bozhevolnyi, K. Leosson, A. Boltasseva, J. Microsc. 210, 324 (2003)CrossRefPubMedMathSciNetGoogle Scholar
  17. 17.
    H. Ditlbacher, J.R. Krenn, G. Schider, A. Leitner, F.R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002)CrossRefADSGoogle Scholar
  18. 18.
    J.R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, F.R. Aussenegg, J. Microsc. 209, 167 (2003)PubMedMathSciNetCrossRefGoogle Scholar
  19. 19.
    A.L. Stepanov, J.R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, F.R. Aussenegg, Opt. Lett. 30, 1524 (2005)CrossRefPubMedADSGoogle Scholar
  20. 20.
    A.B. Evlyukhin, S.I. Bozhevolnyi, Phys. Rev. B 71, 134303 (2005)CrossRefADSGoogle Scholar
  21. 21.
    S.I. Bozhevolnyi, V. Coello, Phys. Rev. B 58, 10899 (1998)CrossRefADSGoogle Scholar
  22. 22.
    V. Coello, T. Søndergaard, S.I. Bozhevolnyi, Opt. Commun. 240, 345 (2004)CrossRefADSGoogle Scholar
  23. 23.
    A.B. Evlyukhin, S.I. Bozhevolnyi, JETP Lett. 81, 218 (2005)CrossRefADSGoogle Scholar
  24. 24.
    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)CrossRefGoogle Scholar
  25. 25.
    J.P. Kottmann, O.J.F. Martin, D.R. Smith, S. Schultz, Phys. Rev. B 64, 235402 (2001)CrossRefADSGoogle Scholar
  26. 26.
    A. Hohenau, J.R. Krenn, G. Schider, H. Ditlbacher, A. Leitner, F.R. Aussenegg, W.L. Schaich, Europhys. Lett. 69, 538 (2005)CrossRefADSGoogle Scholar
  27. 27.
    A.B. Evlyukhin, S.I. Bozhevolnyi, Surf. Sci. 590, 173 (2005)CrossRefADSGoogle Scholar
  28. 28.
    T. Søndergaard, S.I. Bozhevolnyi, Phys. Rev. B 71, 125429 (2005)CrossRefADSGoogle Scholar
  29. 29.
    C. Girard, A. Dereux, Rep. Prog. Phys. 59, 657 (1996)CrossRefADSGoogle Scholar
  30. 30.
    L. Novotny, B. Hecht, D.W. Pohl, J. Appl. Phys. 81, 1708 (1997)CrossRefGoogle Scholar
  31. 31.
    T. Søndergaard, S.I. Bozhevolnyi, Phys. Rev. B 69, 045422 (2004)CrossRefADSGoogle Scholar
  32. 32.
    O. Keller, M. Xiao, S. Bozhevolnyi, Surf. Sci. 280, 217 (1993)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A.B. Evlyukhin
    • 1
    Email author
  • S.I. Bozhevolnyi
    • 2
  • A.L. Stepanov
    • 3
    • 4
  • J.R. Krenn
    • 3
  1. 1.Department of Physics and Applied MathematicsVladimir State UniversityVladimirRussia
  2. 2.Department of Physics and NanotechnologyAalborg UniversityAalborg OstDenmark
  3. 3.Institute for Experimental Physics and Erwin Schrödinger Institute for Nanoscale ResearchKarl-Franzens-University GrazGrazAustria
  4. 4.Kazan Physical-Technical InstituteRussian Academy of SciencesKazanRussia

Personalised recommendations