Advertisement

Applied Physics B

, Volume 84, Issue 1–2, pp 303–308 | Cite as

The role of phase-matching and nanocrystal-size effects in three-wave mixing and CARS processes in porous gallium phosphide

  • L.A. GolovanEmail author
  • G.I. Petrov
  • G.Y. Fang
  • V.A. Melnikov
  • S.A. Gavrilov
  • A.M. Zheltikov
  • V.Y. Timoshenko
  • P.K. Kashkarov
  • V.V. Yakovlev
  • C.F. Li
Article

Abstract

Nonlinear-optical interactions, such as second-harmonic and sum-frequency generation and coherent anti-Stokes Raman spectroscopy (CARS), are investigated in porous GaP for the first time by means of a novel laser source based on mode-locked picosecond Nd3+:YVO4 laser and subsequent continuum generation in an optical fiber. The efficiency of the former two nonlinear optical processes is shown to be strongly dependent on the wavelengths of the interacting waves and tends to increase with the decrease of the excitation wavelength. The power of the generated second-harmonic and sum-frequency increases by a factor of 2 and 30, respectively, compared to the crystalline GaP. In contrast, the CARS signal in porous GaP is found to be less efficient than one in crystalline GaP. The observed results are explained in terms of competition of the phase-matching effects in GaP nanocrystals and the enhanced photon lifetime in scattering porous GaP layers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.M. Fejer, Phys. Today 47, 25 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995)zbMATHGoogle Scholar
  3. 3.
    C.M. Soukoulis (Ed.) Photonic Crystals and Light Localization in the 21-st Century (Kluwer Academic, Dordrecht, 2001)Google Scholar
  4. 4.
    V.M. Shalaev (Ed.) Optical Properties of Random Nanostructures, Topics in Applied Physics 82 (Springer Verlag, Berlin – Heidelberg, 2002)Google Scholar
  5. 5.
    L.A. Golovan, V.Y. Timoshenko, A.B. Fedotov, L.P. Kuznetsova, D.A. Sidorov-Biryukov, P.K. Kashkarov, A.M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, F. Koch, Appl. Phys. B 73, 31 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    P.K. Kashkarov, L.A. Golovan, A.B. Fedotov, A.I. Efimova, L.P. Kuznetsova, V.Y. Timoshenko, D.A. Sidorov-Biryukov, A.M. Zheltikov, J.W. Haus, J. Opt. Soc. Am. B 19, 2273 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    S.V. Zabotnov, S.O. Konorov, L.A. Golovan, A.B. Fedotov, A.M. Zheltikov, V.Y. Timoshenko, P.K. Kashkarov, H. Zhang, JETP 99, 28 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    L.A. Golovan, L.P. Kuznetsova, A.B. Fedotov, S.O. Konorov, D.A. Sidorov-Biryukov, V.Y. Timoshenko, A.M. Zheltikov, P.K. Kashkarov, Appl. Phys. B 76, 429 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    I.M. Tiginyanu, I.V. Kravetsky, J. Monecke, W. Cordts, G. Marowsky, H.L. Hartnagel, Appl. Phys. Lett. 77, 2415 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    L.A. Golovan, V.A. Mel’nikov, S.O. Konorov, A.B. Fedotov, S.A. Gavrilov, A.M. Zheltikov, P.K. Kashkarov, V.Y. Timoshenko, G.I. Petrov, L. Li, V.V. Yakovlev, JETP Lett. 78, 193 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    V.A. Mel’nikov, L.A. Golovan, S.O. Konorov, D.A. Muzychenko, A.B. Fedotov, A.M. Zheltikov, V.Y. Timoshenko, P.K. Kashkarov, Appl. Phys. B 79, 225 (2004)CrossRefGoogle Scholar
  12. 12.
    M. Reid, I.V. Cravetchi, R. Fedosejevs, I.M. Tiginyanu, L. Sirbu, R.W. Boyd, Appl. Phys. Lett. 86, 021904 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    M. Reid, I. Cravetchi, R. Fedosejevs, I.M. Tiginyanu, L. Sirbu, R.W. Boyd, Phys. Rev. B. 71, 81306 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    G.I. Petrov, V. Shcheslavskiy, V.V. Yakovlev, I. Ozerov, E. Chelnokov, W. Marine, Appl. Phys. Lett. 83, 3993 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    S. Lettieri, P. Maddalena, J. Appl. Phys. 91, 5564 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    V. Gayvoronsky, A. Galas, E. Shepelyavyy, T. Dittrich, V.Y. Timoshenko, S.A. Nepijko, M.S. Brodyn, F. Koch, Appl. Phys. B 80, 97 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    R. Sutherland, Handbook on Nonlinear Optics (Marcell Dekker, New York, 1996)Google Scholar
  18. 18.
    R. Adair, L.L. Chase, S.A. Payne, Phys. Rev. B 39, 3337 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    G.Y. Fang, Y.L. Mo, Y.L. Song, Y.X. Wang, C.F. Li, L.C. Song, Opt. Commun. 205, 337 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1960)Google Scholar
  21. 21.
    A. Fiore, V. Berger, E. Rosencher, P. Bravetti, J. Nagle, Nature 391, 463 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    F. Genereux, S.W. Leonard, H.M. van Driel, A. Birner, U. Gösele, Phys. Rev. B 63, 161101 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1968)ADSCrossRefGoogle Scholar
  24. 24.
    M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, E. Rosencher, Nature 432, 374 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    S. Skipetrov, Nature 432, 285 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    M. Centini, G. D’Aguanno, L. Sciscione, C. Sibilia, M. Bertolotti, M. Scalora, M.J. Bloemer, Opt. Lett. 29, 1924 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    M. Chen, C.F. Li, S.J. Ma, M. Xu, W.B. Wang, Y.X. Xia, J. Nonlinear. Opt. Phys. Mater. 14, 41 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    P.M. Johnson, A. Imhof, B.P.J. Bret, J. Gómez Rivas, A. Lagendijk, Phys. Rev. E 68, 016604 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    L.A. Golovan, V.A. Melnikov, K.P. Bestem’yanov, S.V. Zabotnov, V.M. Gordienko, V.Y. Timoshenko, A.M. Zheltikov, P.K. Kashkarov, Appl. Phys. B 81, 353 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    D.S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini, Nature 390, 671 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    N. Garcia, A.Z. Genack, Phys. Rev. Lett. 66, 1850 (1991)ADSCrossRefGoogle Scholar
  32. 32.
    A. Lagendijk, J. Gómez Rivas, A. Imhof, F.J.P. Schuurmans, R. Sprik. Propagation of Light in Disordered Semiconductor Materials, in: C.M. Soukoulis (Ed.) Photonic Crystals and Light Localization in the 21st century (Kluwer, Dordrecht, 2001), p. 447Google Scholar
  33. 33.
    H. Cao, Random Lasers with Coherent Feedback in: V.M. Shalaev (Ed.) Optical Properties of Nanostructured Random Media, Top. Appl. Phys. 82, 303 (2002)Google Scholar
  34. 34.
    J.E. Sipe, R.W. Boyd, Nanocomposite Materials for Nonlinear Optics Based on Local Field Effects in: V.M. Shalaev (ed.) Optical Properties of Nanostructured Random Media, Top. Appl. Phys. 82, 1 (2002)Google Scholar
  35. 35.
    V.E. Kravtsov, V.M. Agranovich, K.I. Grigorishin, Phys. Rev. B 44, 4931 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    F.J.P. Schuurmans, D. Vanmaekelbergh, J. van de Lagemaat, A. Lagendijk, Science 284, 141 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    B.O. Seraphin, H.E. Bennett, in: R.W. Willardson, A.C. Beer (Eds.), Optical Properties of III-V Compounds (Academic, New York, 1967)Google Scholar
  38. 38.
    J.P. Coffine, F. De Martini, Phys. Rev. Lett. 22, 60 (1969)ADSCrossRefGoogle Scholar
  39. 39.
    A.I. Belogorokhov, V.A. Karavanskii, A.N. Obraztsov, V.Y. Timoshenko, JETP Lett. 60, 274 (1994)ADSGoogle Scholar
  40. 40.
    V.V. Ushakov, V.A. Dravin, N.N. Mel’nik, T.V. Zavaritskaya, N.N. Loiko, V.A. Karavanskii, E.A. Konstantinova, V.Y. Timoshenko, Semiconductors 32, 886 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    G.I. Petrov, V.V. Yakovlev, N.I. Minkovski, Opt. Commun. 229, 441 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    G.I. Petrov, V.V. Yakovlev, Opt. Express 13, 1299 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    S. Adachi, J. Appl. Phys. 66, 6030 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • L.A. Golovan
    • 1
    Email author
  • G.I. Petrov
    • 2
  • G.Y. Fang
    • 3
  • V.A. Melnikov
    • 1
  • S.A. Gavrilov
    • 4
  • A.M. Zheltikov
    • 1
  • V.Y. Timoshenko
    • 1
  • P.K. Kashkarov
    • 1
  • V.V. Yakovlev
    • 2
  • C.F. Li
    • 3
  1. 1.Physics DepartmentM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of PhysicsUniversity of Wisconsin–MilwaukeeMilwaukeeUSA
  3. 3.Department of PhysicsHarbin Institute of TechnologyHarbinChina
  4. 4.Moscow Institute of Electronic TechnologiesMoscowRussia

Personalised recommendations