Advertisement

Applied Physics B

, 83:273 | Cite as

Characterization of periodically poled LiTaO3 crystals by means of spontaneous parametric down-conversion

  • K.A. Kuznetsov
  • H.C. Guo
  • Gs.Kh. Kitaeva
  • A.A. Ezhov
  • D.A. Muzychenko
  • A.N. Penin
  • S.H. Tang
Article

Abstract

We describe the observation of quasi-phase-matched spontaneous parametric down-conversion in eee-geometry in periodically poled LiTaO3 crystals. For scattered light, the two-dimensional angular-frequency intensity distribution was studied. Several detuning curves were recorded, corresponding to high orders m=-2, -3, -4, -5 of quasi-phase matching. The measured periods of domain gratings agree with the data obtained by atomic-force microscopy for the etched crystal surfaces. The presence of both odd and even orders indicates that the lengths of positive and negative domains are unequal. To determine the mean duty cycle for regular domain gratings we propose comparing of the intensities of spontaneous parametric down-conversion in different orders of quasi-phase-matching.

Keywords

Duty Cycle Lithium Tantalate Sodium Niobate Electrostatic Force Microscopy Spontaneous Parametric Down Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.V. Golenishev-Kutuzov, V.A. Golenishev-Kutuzov, R.I. Kalimullin, Phys. Uspekhi 43, 663 (2000)CrossRefGoogle Scholar
  2. 2.
    Y.-S. Lee, T. Meade, M.L. Naudeau, T.B. Norris, Appl. Phys. Lett. 77, 2488 (2000)CrossRefADSGoogle Scholar
  3. 3.
    F. Saurenbach, B.D. Terris, Appl. Phys. Lett. 56, 1703 (1990)CrossRefADSGoogle Scholar
  4. 4.
    V.Ya. Shur, E. Shishkin, E. Rumyantsev et al., Ferroelectrics 304, 111 (2004)CrossRefGoogle Scholar
  5. 5.
    Z.W. Hu, P.A. Thomas, W.P. Risk, Phys. Rev. B 59, 14259 (1999)CrossRefADSGoogle Scholar
  6. 6.
    S.J. Holmgren, V. Pasiskevicius, S. Wang, F. Laurell, Opt. Lett. 28, 1555 (2003)PubMedCrossRefADSGoogle Scholar
  7. 7.
    Y. Uesu, S. Kurimura, Y. Yamamoto, Appl. Phys. Lett. 66, 2165 (1995)CrossRefADSGoogle Scholar
  8. 8.
    R.S. Cudney, V. Garces-Chavez, P. Negrete-Regagnon, Opt. Lett. 22, 439 (1997)CrossRefADSGoogle Scholar
  9. 9.
    Y.-S. Lee, T. Meade, M.L. Naudeau, T.B. Norris, Appl. Phys. Lett. 77, 2488 (2000)CrossRefADSGoogle Scholar
  10. 10.
    A.A. Aleksandrovskii, G.Kh. Kitaeva, S.P. Kulik, A.N. Penin, Sov. Phys. JETP 63, 613 (1986)Google Scholar
  11. 11.
    G.Kh. Kitaeva, A.N. Penin, Quantum Electron. 34, 597 (2004)CrossRefGoogle Scholar
  12. 12.
    G.Kh. Kitaeva, V.V. Tishkova, A.N. Penin, J. Raman Spectrosc. 36, 116 (2005)CrossRefADSGoogle Scholar
  13. 13.
    G.Kh. Kitaeva, V.V. Tishkova, I.I. Naumova, A.N. Penin, C.H. Kang, S.H. Tang, Appl. Phys. B 81, 645 (2005)CrossRefADSGoogle Scholar
  14. 14.
    L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995)CrossRefADSGoogle Scholar
  15. 15.
    S.N. Zhu, Y.Y. Zhu, Z.Y. Zhang, J. Appl. Phys. 77, 5481 (1995)CrossRefADSGoogle Scholar
  16. 16.
    S.N. Zhu, Y.Y. Zhu, Z.J. Yang, Appl. Phys. Lett. 67, 320 (1995)CrossRefADSGoogle Scholar
  17. 17.
    Q. Zhong, D. Inniss, K. Kjoller, V.B. Elings, Surf. Sci. Lett. 290, L688 (1993)CrossRefGoogle Scholar
  18. 18.
    G.Kh. Kitaeva, A.N. Penin, JETP 98, 272 (2004)CrossRefADSGoogle Scholar
  19. 19.
    K.S. Abedina, H. Ito, J. Appl. Phys. 80, 6561 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • K.A. Kuznetsov
    • 1
  • H.C. Guo
    • 2
  • Gs.Kh. Kitaeva
    • 1
  • A.A. Ezhov
    • 1
  • D.A. Muzychenko
    • 1
  • A.N. Penin
    • 1
  • S.H. Tang
    • 2
  1. 1.Department of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of PhysicsNational University of SingaporeSingaporeSingapore

Personalised recommendations