Applied Physics B

, Volume 83, Issue 1, pp 75–79 | Cite as

Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua

  • J.W. Walewski
  • J.A. Filipa
  • C.L. Hagen
  • S.T. Sanders
Article

Abstract

High-pulse-energy super-continua featuring an M2 of one were generated in standard single-mode fibers. The highest pulse energy achieved was ∼600 nJ and the pulse duration was ∼1 ps. The spectral width of the generated continua extended over up to 35% of the pump wavelength.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Dorsinville, P.P. Ho, J.T. Manassah, R.R. Alfano, Applications of Supercontinuum: Present and Future. In: The Supercontinuum Laser Source (Springer, New York, 1989), Chap. 9Google Scholar
  2. 2.
    P. Glas, D. Fischer, G. Steinmeyer, R. Iliew, Y.S. Skibina, N.B. Skibina, V.I. Beloglasov, Generation of a 3-Octave White-Light Continuum in a High-n2 Microstructure Fiber with Normal Dispersion in the Visible/Near-Infrared Spectral Region. In: Proc. CLEO/QELS, page CThEE1, 2004Google Scholar
  3. 3.
    K.P. Hansen, R.E. Kristiansen, Supercontinuum generation in photonic crystal fibers. http://www.crystal-fibre.com/support/Supercontinuum% 20-%20General.pdf, 2005Google Scholar
  4. 4.
    S.L. Chin, S. Petit, F. Borne, K. Miyazaki, Jpn. J. Appl. Phys. 38, L126 (1999)CrossRefADSGoogle Scholar
  5. 5.
    J.M. Dudley, S. Coen, Opt. Lett. 27, 1180 (2002)CrossRefADSGoogle Scholar
  6. 6.
    J.W. Walewski, J.A. Filipa, S.T. Sanders, in preparationGoogle Scholar
  7. 7.
    G. Gurzadyan, H. Görner, Chem. Phys. Lett. 319, 164 (2000)CrossRefADSGoogle Scholar
  8. 8.
    S.L. Chin, A. Brodeur, S. Petit, O.G. Kosareva, V.P. Kandidov, J. Nonlinear Opt. Phys. Mater. 8, 121 (1999)CrossRefADSGoogle Scholar
  9. 9.
    R.R. Alfano (Ed.), The Supercontinuum Laser Source (Springer, New York, 1989)Google Scholar
  10. 10.
    T. Hori, J. Takayanagi, N. Nishizawa, T. Goto, Opt. Express 12, 317 (2004)CrossRefADSGoogle Scholar
  11. 11.
    J.K. Ranka, R.S. Windeler, A.J. Stentz, Opt. Lett. 25, 25 (2000)CrossRefADSGoogle Scholar
  12. 12.
    A. Bjarklev, J. Broeng, A.S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, Boston, 2003)Google Scholar
  13. 13.
    Nonlinear Photonic Crystal Fiber NL·1550·NEG·1. Crystal Fibre, http://www.crystal-fibre.com/datasheets/NL-1550-NEG-1.pdfGoogle Scholar
  14. 14.
    C.L. Hagen, J.W. Walewski, S.T. Sanders, IEEE Photonics Tech. Lett. 118, 91 (2005)Google Scholar
  15. 15.
    C. Lin, R.H. Stolen, Appl. Phys. Lett. 28, 216 (1976)CrossRefADSGoogle Scholar
  16. 16.
    K. Washio, K. Inoue, T. Tanigawa, Electron. Lett. 16, 331 (1980)CrossRefADSGoogle Scholar
  17. 17.
    J.W. Walewski, S.T. Sanders, Appl. Phys. B 79, 415 (2004)Google Scholar
  18. 18.
    K.P. Hansen, J.R. Folkenberg, C. Peucheret, A. Bjarklev, Fully Dispersion Controlled Triangular-core Nonlinear Photonic Crystal Fiber. In: Optical Fiber Communication Conf., Vol. OFC 2003, Atlanta (2003)Google Scholar
  19. 19.
    P.L. Baldeck, P.P. Ho, R.R. Alfano, Rev. Phys. Appl. 2, 1677 (1987)Google Scholar
  20. 20.
    Oz Optics Ltd. FC/APC connectors versus flat angled finish FC connectors, http://www.ozoptics.com/ALLNEW_PDF/APN0006.pdf (2003)Google Scholar
  21. 21.
    Photonic Crystal Fiber End-Sealing. Crystal Fibre A/S, http://www.crystal-fibre.com/products/Sealing.pdfGoogle Scholar
  22. 22.
    F. Di Teodoro, J.P. Koplow, S.W. Moore, D.A.V. Kliner, Opt. Lett. 27, 518 (2002)CrossRefADSGoogle Scholar
  23. 23.
    Corning OptiFocusTM Collimating Lensed Fiber. Corning, http://www.corning.com/photonicmaterials/products_services/OptiFocus/Google Scholar
  24. 24.
    A.C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, Phys. Rev. Lett. 82, 3883 (1999)CrossRefADSGoogle Scholar
  25. 25.
    R.M. Wood, Laser-induced Damage of Optical Materials (Institute of Physics Publishing, London, 2003)Google Scholar
  26. 26.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1995), 2nd edn.Google Scholar
  27. 27.
    P. Beaud, W. Hodel, B. Zysset, H.P. Weber, IEEE J. Quantum Electron. QE-23, 1938 (1987)CrossRefADSGoogle Scholar
  28. 28.
    M.N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J.P. Gordon, D.S. Chemla, J. Opt. Soc. Am. B 6, 1149 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    G. Keiser, Optical Fiber Communications (McGraw-Hill Science, Boston, 2000)Google Scholar
  30. 30.
    N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, Y. Namba, Jpn. J. Appl. Phys. 43, 2547 (2004)CrossRefADSGoogle Scholar
  31. 31.
    R.J. Bartula, J.W. Walewski, S.T. Sanders, Appl. Phys. B, submittedGoogle Scholar
  32. 32.
    R. Huber, H. Satzger, W. Zinth, J. Wachtveitl, Opt. Commun. 194, 443 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J.W. Walewski
    • 1
  • J.A. Filipa
    • 1
  • C.L. Hagen
    • 1
  • S.T. Sanders
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin – MadisonMadisonUSA

Personalised recommendations