Applied Physics B

, Volume 82, Issue 4, pp 599–605 | Cite as

Neodymium concentration dependence of 0.94-, 1.06- and 1.34-μm laser emission and of heating effects under 809- and 885-nm diode laser pumping of Nd:YAG

Article

Abstract

Laser emission in the 0.94-, 1.06- and 1.34-micron ranges in diluted and concentrated Nd:YAG crystals longitudinally pumped by a 885-nm diode laser on the 4I9/24F3/2 transition is investigated. Continuous-wave operation at watt level in all these wavelength ranges is demonstrated with a 1.0-at. % Nd:YAG crystal; however, the laser performance is impeded by the low pump absorption efficiency. Improved output power and overall efficiency were obtained with a highly doped 2.5-at. % Nd:YAG crystal: 5.5 W at 1.06 μm and 3.8 W at 1.34 μm with 0.38 and 0.26 efficiencies, respectively. Comparative results with traditional pumping at 809 nm into the highly absorbing 4F5/2 level are presented, showing the advantage of the direct 4F3/2 pumping. The influence of the lasing wavelength and of the Nd concentration on the thermal effects induced by the optical pumping in the laser material is discussed. A clear relation between the heat generated in the Nd:YAG crystals in lasing and non-lasing regimes, a function of the Nd doping, is demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ross M (1968) Proc. IEEE 56:196Google Scholar
  2. 2.
    Rosenkrantz LJ (1972) J. Appl. Phys. 43:4603CrossRefGoogle Scholar
  3. 3.
    Lavi R, Jackel S, Tzuk Y, Winik M, Lebiush E, Katz M, Paiss I (1999) Appl. Opt. 38:7382Google Scholar
  4. 4.
    Lupei V, Lupei A, Georgescu S, Taira T, Sato Y, Ikesue A (2001) Phys. Rev. B 64:092102CrossRefGoogle Scholar
  5. 5.
    Golding S, Lavi R, Tal A, Lebiush E, Tzuk Y, Jackel S (2004) IEEE J. Quantum Electron. QE-40:384CrossRefGoogle Scholar
  6. 6.
    Lupei V, Lupei A, Pavel N, Taira T, Shoji I, Ikesue A (2001) Appl. Phys. Lett. 79:590CrossRefGoogle Scholar
  7. 7.
    Lupei V, Lupei A, Pavel N, Taira T, Ikesue A (2001) Appl. Phys. B 73:757CrossRefGoogle Scholar
  8. 8.
    Lupei V, Pavel N, Taira T (2001) Opt. Lett. 26:1678Google Scholar
  9. 9.
    Lupei V, Pavel N, Taira T (2002) IEEE J. Quantum Electron. QE-38:240CrossRefGoogle Scholar
  10. 10.
    Lupei V, Pavel N, Taira T (2002) Appl. Phys. Lett. 80:4309CrossRefGoogle Scholar
  11. 11.
    Lupei V, Lupei A (2000) Phys. Rev. B 61:8087CrossRefGoogle Scholar
  12. 12.
    Lupei V, Lupei A, Georgescu S, Diaconescu B, Taira T, Kurimura S, Ikesue A (2002) J. Opt. Soc. Am. B 19:360Google Scholar
  13. 13.
    Zhou Y (1986) J. Cryst. Growth 78:31CrossRefGoogle Scholar
  14. 14.
    Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) J. Am. Ceram. Soc. 78:1033CrossRefGoogle Scholar
  15. 15.
    Lu J, Prabhu M, Song J, Li C, Xu J, Ueda K, Kaminskii AA, Yagi H, Yanagitani T (2000) Appl. Phys. B 71:469Google Scholar
  16. 16.
    Lupei V, Pavel N, Taira T (2003) Appl. Phys. Lett. 83:3653CrossRefGoogle Scholar
  17. 17.
    Kellner T, Czeranowski C, Huber G (1999) in Technical Digest of Novel Lasers and Devices. Munich, Vol LTUD-1, p 107Google Scholar
  18. 18.
    Sato Y, Taira T, Pavel N, Lupei V (2003) Appl. Phys. Lett. 82:844Google Scholar
  19. 19.
    Lupei V, Pavel N, Sato Y, Taira T (2003) Opt. Lett. 28:2366PubMedGoogle Scholar
  20. 20.
    Lupei V, Pavel N, Taira T (2002) Appl. Phys. Lett. 81:2677CrossRefGoogle Scholar
  21. 21.
    Lupei V, Aka G, Vivien D (2002) Opt. Commun. 204:399CrossRefGoogle Scholar
  22. 22.
    Hodgson N, Weber H (1997) Optical Resonators. Springer, Berlin Heidelberg New York, p 602Google Scholar
  23. 23.
    Pavel N, Lupei V, Taira T (2003) in CLEO/Europe EQEC-2003 Conference. Munich, 23–26 June 2003, paper CA9TGoogle Scholar
  24. 24.
    Giesen A, Hugel H, Voss A, Witting K, Braud U, Opower H (1994) Appl. Phys. B: Lasers Opt. 58:365Google Scholar
  25. 25.
    Fan TY (1993) IEEE J. Quantum Electron. QE-29:1457CrossRefGoogle Scholar
  26. 26.
    Lupei V, Lupei A, Georgescu S, Ionescu C (1986) Opt. Commun. 60:59CrossRefGoogle Scholar
  27. 27.
    Lupei V, Lupei A, Georgescu S, Yen WM (1989) J. Appl. Phys. 66:3792CrossRefGoogle Scholar
  28. 28.
    Deb KK, Buser RG, Paul J (1981) Appl. Opt. 20:1203Google Scholar
  29. 29.
    Shoji I, Sato Y, Kurimura S, Lupei V, Taira T, Ikesue A, Yoshida K (2002) Opt. Lett. 27:234Google Scholar
  30. 30.
    Brown DC (1998) IEEE J. Quantum Electron. QE-34:560CrossRefGoogle Scholar
  31. 31.
    Inoue Y, Fujikawa S (2000) IEEE J. Quantum Electron. QE-36:751CrossRefGoogle Scholar
  32. 32.
    Okida M, Itoh M, Yatagai T, Ogilvy H, Piper J, Omatsu T (2005) Opt. Express 13:4909CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • N. Pavel
    • 1
    • 2
  • V. Lupei
    • 1
    • 2
  • J. Saikawa
    • 1
  • T. Taira
    • 1
  • H. Kan
    • 3
  1. 1.Laser Research CenterNational Institutes of Natural Sciences, Institute for Molecular ScienceOkazakiJapan
  2. 2.Solid-State Quantum Electronics LaboratoryNational Institute for Laser, Plasma and Radiation PhysicsBucharestRomania
  3. 3.Central Research LaboratoryHamamatsu Photonics, K.K.ShizuokaJapan

Personalised recommendations