Applied Physics B

, Volume 82, Issue 4, pp 543–547

Optical switching in metallic photonic crystal slabs with photoaddressable polymers

  • D. Nau
  • R.P. Bertram
  • K. Buse
  • T. Zentgraf
  • J. Kuhl
  • S.G. Tikhodeev
  • N.A. Gippius
  • H. Giessen
Article
  • 123 Downloads

Abstract

We report on a metal-polymer compound material with optical properties that can be reversibly switched all-optically. The key element is a metallic photonic crystal slab with an additional layer of photoaddressable material that provides a large variable birefringence and sharp resonances. Pump-probe experiments show a shift of the photonic crystal resonances that depends on the pump polarization and on the exposure. Comparison of the results with calculations from a scattering-matrix theory allows one to determine the refractive index changes for different polarization geometries and to model our compound material quantitatively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eich M, Wendorff J (1990) J. Opt. Soc. Am. B 7:1428Google Scholar
  2. 2.
    Hvilsted S, Andruzzi F, Ramanujam PS (1992) Opt. Lett. 17:1234Google Scholar
  3. 3.
    Zilker SJ, Bieringer T, Haarer D, Stein RS, van Egmond JW, Kostromine SG (1998) Adv. Mater. 10:855Google Scholar
  4. 4.
    Sabi Y, Yamamoto M, Watanabe H, Bieringer T, Haarer D, Hagen R, Kostromine SG, Berneth H (2001) Jpn. J. Appl. Phys. Part 1 40:1613Google Scholar
  5. 5.
    Lachut BL, Maier SA, Atwater HA, de Dood MJA, Polman A, Hagen R, Kostromine SG (2004) Adv. Mater. 16:1746CrossRefGoogle Scholar
  6. 6.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, BerlinGoogle Scholar
  7. 7.
    Götz T, Hoheisel W, Vollmer M, Träger F (1995) Z. Phys. D 33:133CrossRefGoogle Scholar
  8. 8.
    Gotschy W, Vonmetz K, Leitner A, Aussenegg FR (1996) Appl. Phys. B 63:381Google Scholar
  9. 9.
    Linden S, Kuhl J, Giessen H (2001) Phys. Rev. Lett. 86:4688CrossRefPubMedGoogle Scholar
  10. 10.
    Christ A, Zentgraf T, Kuhl J, Tikhodeev SG, Gippius NA, Giessen H (2004) Phys. Rev. B 70:125113CrossRefGoogle Scholar
  11. 11.
    Bertram RP, Soergel E, Blank H, Benter N, Buse K, Hagen R, Kostromime SG (2003) J. Appl. Phys. 94:6208Google Scholar
  12. 12.
    Bertram RP, Benter N, Apitz D, Soergel E, Buse K, Hagen R, Kostromime SG (2004) Phys. Rev. E 70:041802CrossRefGoogle Scholar
  13. 13.
    Christ A, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2003) Phys. Rev. Lett. 91:183901CrossRefPubMedGoogle Scholar
  14. 14.
    Tikhodeev SG, Yablonskii AL, Muljarov EA, Gippius NA, Ishihara T (2002) Phys. Rev. B 66:045102CrossRefGoogle Scholar
  15. 15.
    Cimrova V, Neher D, Kostromine S, Bieringer T (1999) Macromolecules 32:8496CrossRefGoogle Scholar
  16. 16.
    Apitz D, Bertram RP, Benter N, Hieringer W, Andreasen JW, Nielsen MM, Johansen PM, Buse K (2005) Phys. Rev. E 72:036610CrossRefGoogle Scholar
  17. 17.
    H. Guo et al., to be publishedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • D. Nau
    • 1
  • R.P. Bertram
    • 2
  • K. Buse
    • 2
  • T. Zentgraf
    • 3
  • J. Kuhl
    • 3
  • S.G. Tikhodeev
    • 4
  • N.A. Gippius
    • 4
  • H. Giessen
    • 1
    • 5
  1. 1.Institute of Applied PhysicsUniversity of BonnBonnGermany
  2. 2.Institute of PhysicsUniversity of BonnBonnGermany
  3. 3.Max-Planck-Institute for Solid State ResearchStuttgartGermany
  4. 4.A.M. Prokhorov General Physics Institute RASMoscowRussia
  5. 5.4th Physics InstituteUniversity of StuttgartStuttgartGermany

Personalised recommendations