Applied Physics B

, Volume 82, Issue 3, pp 347–358 | Cite as

Architecture of a blue high contrast multiterawatt ultrashort laser

  • R. Clady
  • G. Coustillier
  • M. Gastaud
  • M. Sentis
  • P. Spiga
  • V. Tcheremiskine
  • O. Uteza
  • L.D. Mikheev
  • V. Mislavskii
  • J.P. Chambaret
  • G. Chériaux
Article

Abstract

The strategy used to develop an innovative high contrast multiterawatt femtosecond laser chain based on a hybrid (solid/gas) technology is reported. The laser system includes a Ti:sapphire oscillator generating 50 fs pulses at 950 nm, an optical parametric chirped pulse amplification stage, a second harmonic frequency converter for pulse temporal cleaning, and a final photolytical XeF(C–A) excimer amplifier for direct high peak-power amplification of ultrashort laser pulses in the blue (475 nm) spectral region. Several important issues concerning the design of the laser front-end, the energy extraction and beam phase control in the high peak-power XeF(C–A) amplifier are theoretically addressed. A detailed description of the XeF(C–A) amplifier and careful measurements of its energetic, optical and pumping characteristics are also given, together with the first pilot amplification experiments in the low density XeF(C–A) medium to assert the significance of our approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bahk SW, Rousseau P, Planchon TA, Chvykov V, Kalintchenko G, Maksimchuk A, Mourou GA, Yanovsky V (2004) Opt. Lett. 29:2837CrossRefADSGoogle Scholar
  2. 2.
    Aoyama M, Yamakawa K, Akahane Y, Ma J, Inoue N, Ueda H, Kiriyama H (2003) Opt. Lett. 28:1594CrossRefADSGoogle Scholar
  3. 3.
    Backus S, Durfee III CG, Murnane MM, Kapteyn HC (1998) Rev. Sci. Instrum. 69:1207CrossRefADSGoogle Scholar
  4. 4.
    Itatani J, Faure J, Nantel M, Mourou G, Watanabe S (1998) Opt. Commun. 148:70CrossRefADSGoogle Scholar
  5. 5.
    Renault A, Augé-Rochereau F, Planchon T, D’Oliveira P, Auguste T, Chériaux G, Chambaret JP (2005) Opt. Commun. 248:535CrossRefADSGoogle Scholar
  6. 6.
    Begishev IA, Kalashnikov M, Karpov V, Nickles P, Schönnagel H, Kulagin IA, Usmanov T (2004) J. Opt. Soc. Am. B 21:318CrossRefADSGoogle Scholar
  7. 7.
    Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau JP, Chambaret JP, Augé-Rochereau F, Chériaux G, Etchepare J (2005) Opt. Lett. 30:920CrossRefADSGoogle Scholar
  8. 8.
    Nantel M, Itatani J, Tien AC, Faure J, Kaplan D, Bauvier M, Buma T, Van Rompay P, Nee J, Pronko PP, Umstadter D, Mourou GA (1998) IEEE J. Quantum Electron. QE-4:449Google Scholar
  9. 9.
    Doumy G, Quéré F, Gobert O, Perdrix M, Martin P, Audebert P, Gauthier JC, Geindre JP, Wittmann T (2004) Phys. Rev. E 69:026402CrossRefADSGoogle Scholar
  10. 10.
    Ross IN, Matousek P, New GHC, Osvay K (2002) J. Opt. Soc. Am. B 19:2945CrossRefADSGoogle Scholar
  11. 11.
    Mikheev LD (1992) Laser Part. Beams 10:473CrossRefADSGoogle Scholar
  12. 12.
    Sharp TE, Hofmann T, Dane CB, Wilson WL, Tittel FK, Wisoff PJ (1990) Opt. Lett. 15:1461ADSGoogle Scholar
  13. 13.
    Hofmann T, Sharp TE, Dane CB, Wisoff PJ, Wilson Jr WL, Tittel FK, Sabo G (1992) IEEE J. Quantum Electron. QE-28:1366CrossRefADSGoogle Scholar
  14. 14.
    Basov NG, Zuev VS, Kanaev AV, Mikheev LD, Stavrovskii DB (1979) Sov. J. Quantum Electron. 9:629CrossRefGoogle Scholar
  15. 15.
    Tcheremiskine VI, Sentis ML, Mikheev LD (2002) Appl. Phys. Lett. 81:403CrossRefADSGoogle Scholar
  16. 16.
    Mikheev L, Levtchenko K, Mamaev S, Mislavskii V, Moskalev T, Sentis M, Shirokikh A, Tcheremiskine V, Yalovoi V, “Direct amplification of frequency doubled femtosecond pulses from Ti,sa laser in photochemically driven XeF(C–A) active media”, in High-Power Laser Ablation V, Claude Phipps R (ed), Proc. SPIE Vol. 5448 (SPIE, Bellingham, WA 2004) 384–392Google Scholar
  17. 17.
    Zuev VS, Kashnikov GN, Mamaev SB (1992) Sov. J. Quantum Electron. 22:973CrossRefGoogle Scholar
  18. 18.
    Li Yu, Liu JR, Ma LY, Yi AP, Huang C, An XX, Zhang YS, “Optically pumping XeF(C–A) laser and its properties” in CLEO/Europe - EQEC 2005, 12–17 June 2005, Munich, paper CG-6-TUE, Advance program p 77Google Scholar
  19. 19.
    Koechner W (1999) Solid-State Laser Eng, 5th edn. Springer, Berlin HeidelbergGoogle Scholar
  20. 20.
    Strickland D, Mourou G (1985) Opt. Commun. 56:219CrossRefADSGoogle Scholar
  21. 21.
    Rosen DI, Weyl G (1987) J Phys D Appl Phys 20:1264CrossRefADSGoogle Scholar
  22. 22.
    Ireland C, Grey Morgan C (1974) J Phys D Appl Phys 7:L87CrossRefADSGoogle Scholar
  23. 23.
    Milonni PW, Gibson RB, Taylor AJ (1988) J. Opt. Soc. Am. B 5:1360ADSGoogle Scholar
  24. 24.
    Obara M, Kannari F (1991) Rare gas-halide lasers, In: Encyclopedia of Lasers and Optical Technology. Academic Press, San DiegoGoogle Scholar
  25. 25.
    Tcheremiskine VI, Uteza OP, Sentis ML, Mikheev LD (2005) Rev. Sci. Instrum., accepted for publicationGoogle Scholar
  26. 26.
    Zuev VS, Mikheev LD (1991) Photochemical Lasers. Harwood Academic, PhiladelphiaGoogle Scholar
  27. 27.
    Tcheremiskine VI, Sentis ML, Sabonnadiere MP, Mikheev LD (2002) Surf. Rev. Lett. 9:645CrossRefGoogle Scholar
  28. 28.
    Beverly III RE (1986) J. Appl. Phys. 60:104CrossRefADSGoogle Scholar
  29. 29.
    Mikheev LD, Tcheremiskine VI, Sabonnadiere MP, Sentis ML, Malinowski GY, Delaporte PC, ‘Modeling of photolytically excited laser mediums pumped by plan multi-channel sliding discharges’, in Proc. of XXIII International Int. Conf. Phenomena in Ionized Gases (ICPIG, Toulouse, France), 17–22 July 1997, I-48–I-49Google Scholar
  30. 30.
    Fulghum SF, Trainor DW, Appel GH (1989) IEEE J. Quantum Electron. QE-25:955CrossRefADSGoogle Scholar
  31. 31.
    Reiching M, Sils J, Johansen H, Matthias E (1999) Appl. Phys. A 69:S743CrossRefADSGoogle Scholar
  32. 32.
    See for instance Lenzner M, Schnürer M, Spielmann C, Krausz F, ‘Intense sub-10-fs laser pulses, pushing the frontiers of nonlinear optics’ in Femtosecond Technology, eds. Kamiya T, Saito F, Wada O, Yajima H, (Springer, Berlin 1999), 245–257, and references thereinGoogle Scholar
  33. 33.
    Sutherland RL (1996) Handbook of Nonlinear Optics. Dekker, New YorkGoogle Scholar
  34. 34.
    Siegmann AE (1986) Lasers. University Science Books, Mill Valley, CAGoogle Scholar
  35. 35.
    Kannari F (1992) Jpn. J. Appl. Phys. 31:2109CrossRefADSGoogle Scholar
  36. 36.
    Boyd RW (1992) Nonlinear Optics. Academic Press, San DiegoGoogle Scholar
  37. 37.
    Ross IN, Matousek P, Towrie M, Langley AJ, Collier JL (1997) Opt. Commun. 144:125CrossRefADSGoogle Scholar
  38. 38.
    Uteza O, Tcheremiskine V, Clady R, Coustillier G, Gastaud M, Gueguen S, Sentis M, Spiga P, Mikheev LD, “Prospects for ultrashort hybrid solid-gas high contrast multiterawatt laser in the blue-green region”, in High Power Laser Ablation V, Claude Phipps R (ed), Proc. SPIE 5448 (SPIE, Bellingham, WA 2004), 1078–1089Google Scholar
  39. 39.
    Chériaux G, Rousseau P, Salin F, Chambaret JP, Walker B, Dimauro LF (1996) Opt. Lett. 21:414ADSGoogle Scholar
  40. 40.
    Treacy E (1969) IEEE J. Quantum Electron. QE-5:454CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • R. Clady
    • 1
  • G. Coustillier
    • 1
  • M. Gastaud
    • 1
  • M. Sentis
    • 1
  • P. Spiga
    • 1
  • V. Tcheremiskine
    • 1
    • 2
  • O. Uteza
    • 1
  • L.D. Mikheev
    • 2
  • V. Mislavskii
    • 2
  • J.P. Chambaret
    • 3
  • G. Chériaux
    • 3
  1. 1.Laboratoire Lasers, Plasmas et Procédés Photoniques (LP3), UMR 6182 CNRSUniversité de la MéditerranéeMarseille cedex 9France
  2. 2.Photochemical Processes LaboratoryP.N. Lebedev Physical InstituteMoscowRussia
  3. 3.Laboratoire d’Optique Appliquée (LOA), UMR 7639 CNRS – EnstaEcole PolytechniquePalaiseau cedexFrance

Personalised recommendations