Advertisement

Applied Physics B

, Volume 82, Issue 3, pp 469–478 | Cite as

Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature

  • X. Liu
  • J.B. Jeffries
  • R.K. Hanson
  • K.M. Hinckley
  • M.A. Woodmansee
Article

Abstract

A tunable diode laser (TDL) temperature sensor is designed, constructed, tested, and demonstrated in the exhaust of an industrial gas turbine. Temperature is determined from the ratio of the measured absorbance of two water vapor overtone transitions in the near infrared where telecommunication diode lasers are available. Design rules are developed to select the optimal pair of transitions for direct absorption measurements using spectral simulations by systematically examining the absorption strength, spectral isolation, and temperature sensitivity to maximize temperature accuracy in the core flow and minimize sensitivity to water vapor in the cold boundary layer. The contribution to temperature uncertainty from the spectroscopic database is evaluated and precise line-strength data are measured for the selected transitions. Gas-temperature measurements in a heated cell are used to verify the sensor accuracy (over the temperature range of 350 to 1000 K, ΔT∼2 K for the optimal line pair and ΔT∼5 K for an alternative line pair). Field measurements of exhaust-gas temperature in an industrial gas turbine demonstrate the practical utility of TDL sensing in harsh industrial environments.

Keywords

Line Strength Line Pair Tunable Diode Laser Cold Boundary Layer Harsh Industrial Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen MG (1998) Meas. Sci. Technol. 9:545CrossRefADSGoogle Scholar
  2. 2.
    Mihalcea RM, Baer DS, Hanson RK (1998) Proc. Combust. Inst. 27:95Google Scholar
  3. 3.
    Arroyo MP, Langlois S, Hanson RK (1994) Appl. Opt. 33:3296ADSGoogle Scholar
  4. 4.
    Baer DS, Newfield ME, Gopaul N, Hanson RK (1994) Opt. Lett. 19:1900ADSGoogle Scholar
  5. 5.
    Nagali V, Hanson RK (1997) Appl. Opt. 36:9518CrossRefADSGoogle Scholar
  6. 6.
    M.G. Allen, E.R. Furlong, R.K. Hanson, in Applied Combustion Diagnostics, ed. by K. Kohse-Hoeinghaus, J.B. Jeffries (Taylor and Francis, New York 2002), p. 479Google Scholar
  7. 7.
    Philippe LC, Hanson RK (1993) Appl. Opt. 32:6090ADSGoogle Scholar
  8. 8.
    Furlong ER, Baer DS, Hanson RK (1996) Proc. Combust. Inst. 26:2851Google Scholar
  9. 9.
    Liu JTC, Rieker GB, Jeffries JB, Hanson RK (2005) Appl. Opt. 44:1zbMATHGoogle Scholar
  10. 10.
    K.M. Hinckley, J.B. Jeffries, R.K. Hanson, in 42nd AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, January 2004, paper AIAA-2004-0713Google Scholar
  11. 11.
    Ebert V, Fernholz T, Giesemann C, Teichert H, Wolfrum J, Jaritz H (2000) Proc. Combust. Inst. 28:423CrossRefGoogle Scholar
  12. 12.
    Whiting EE (1976) J. Quantum Spectrosc. Radiat. Transfer 16:611CrossRefGoogle Scholar
  13. 13.
    Gamache RR, Kennedy S, Hawkins R, Rothman LS (2000) J. Mol. Struct. 517–518:407CrossRefGoogle Scholar
  14. 14.
    Ouyang X, Varghese PL (1989) Appl. Opt. 28:3979ADSGoogle Scholar
  15. 15.
    Sanders ST, Wang J, Jeffries JB, Hanson RK (2001) Appl. Opt. 40:4404CrossRefADSGoogle Scholar
  16. 16.
    Zhou X, Liu X, Jeffries JB, Hanson RK (2003) Meas. Sci. Technol. 14:1459CrossRefADSGoogle Scholar
  17. 17.
    Zhou X, Jeffries JB, Hanson RK (2005) Appl. Phys. B 81:711CrossRefADSGoogle Scholar
  18. 18.
    http://cfa-www.harvard.edu/hitran/Google Scholar
  19. 19.
    Gharavi M, Buckley SG (2004) Appl. Spectrosc. 58:468CrossRefADSGoogle Scholar
  20. 20.
    X. Liu, X. Zhou, J.B. Jeffries, R.K. Hanson, in 43rd AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, January 2005, paper AIAA-2005-0829Google Scholar
  21. 21.
    Arroyo MP, Hanson RK (1993) Appl. Opt. 32:6104ADSGoogle Scholar
  22. 22.
    Langlois S, Birbeck TP, Hanson RK (1994) J. Mol. Spectrosc. 163:27CrossRefADSGoogle Scholar
  23. 23.
    Langlois S, Birbeck TP, Hanson RK (1994) J. Mol. Spectrosc. 167:272CrossRefADSGoogle Scholar
  24. 24.
    Nagali V, Chou SI, Baer DS, Hanson RK (1997) J. Quantum Spectrosc. Radiat. Transfer 57:795CrossRefADSGoogle Scholar
  25. 25.
    Toth RA (1994) Appl. Opt. 33:4851ADSCrossRefGoogle Scholar
  26. 26.
    K.M. Hinckley, M.A. Woodmansee, W. Chen, J. Lu, J. Gu, X. Liu, J.B. Jeffries, in 4th Joint Meeting of the US Sections of the Combustion Institute, Philadelphia, PA, March 2005, p. 808Google Scholar
  27. 27.
    Humilcek J (1982) J. Quantum Spectrosc. Radiat. Transfer 27:437CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • X. Liu
    • 1
  • J.B. Jeffries
    • 1
  • R.K. Hanson
    • 1
  • K.M. Hinckley
    • 2
  • M.A. Woodmansee
    • 2
  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Combustion LaboratoryGeneral Electric Global Research CenterNiskayunaUSA

Personalised recommendations