Applied Physics B

, 82:479

Ultra-high precision mid-IR spectrometer I: Design and analysis of an optical fiber pumped difference-frequency generation source



We report the results of a systematic characterization of various optical fiber pumping schemes for difference-frequency sources employing periodically poled LiNbO3. Theoretical and practical considerations to achieve performance improvements for ultra-sensitive trace gas detection applications are discussed. As a result, we report a new mechanically robust and miniaturized mixing module employing a hybrid fiber with a plano-convex lens, reducing the size of previous DFG configurations by 65%. We also show pump, signal, and idler beam cross-sections before and after passing through a 100-m effective pathlength astigmatic Herriott multi-pass cell.


  1. 1.
    F.K. Tittel, D. Richter, A. Fried, Solid State Mid-Infrared Laser Sources I.T. Sorokina, (ed) K.L. Vodopyanov (2003)Google Scholar
  2. 2.
    Pine AS (1974) J. Opt. Soc. Am. 64:1683ADSGoogle Scholar
  3. 3.
    Töpfer T et al. (1997) Appl. Opt. 36:8042CrossRefADSGoogle Scholar
  4. 4.
    Simon U et al. (1993) Opt. Lett. 18:1062ADSGoogle Scholar
  5. 5.
    Richter D et al. (1998) Appl. Phys. B 67:347CrossRefADSGoogle Scholar
  6. 6.
    Seiter M, Keller D, Sigrist MW (1998) Appl. Phys. B 67:351CrossRefADSGoogle Scholar
  7. 7.
    Sumpf B et al. (1998) Appl. Phys. B 67:369CrossRefADSGoogle Scholar
  8. 8.
    Richter D, Lancaster DG, Tittel FK (2000) Appl. Opt. 39:4444CrossRefADSGoogle Scholar
  9. 9.
    Lancaster DG et al. (2000) Appl. Opt. 39:4436CrossRefADSGoogle Scholar
  10. 10.
    Richter D et al. (2002) Appl. Phys. B 75:281CrossRefADSGoogle Scholar
  11. 11.
    Fried A, Henry B, Wert B, Sewell S, Drummond JR (1998) Appl. Phys. B 67:317CrossRefADSGoogle Scholar
  12. 12.
    Werle P, Muecke R, Slemr F (1993) Appl. Phys. B 57:131CrossRefADSGoogle Scholar
  13. 13.
    Dyroff C et al. (2004) Design and performance assessment of a stable astigmatic Herriott cell for trace has measurements on airborne platforms in Laser Applications to Chemical and Environmental Analysis. MD, OSA, AnnapolisGoogle Scholar
  14. 14.
    Hatanaka T et al. (2000) Opt. Lett. 25:651CrossRefADSGoogle Scholar
  15. 15.
    Missey MJ et al. (1998) Opt. Lett. 23:664CrossRefADSGoogle Scholar
  16. 16.
    P. Weibring, D. Richter, “Ultra-high precision mid-IR spectrometer II: Spectroscopic performance and characterization” in final preparation for submission to Appl. Phys. BGoogle Scholar
  17. 17.
    Tran-Ba-Chu, M. Broyer, J. Phys. 4:523 (1985)Google Scholar
  18. 18.
    Simon U et al. (1993) Appl. Opt. 32:6650ADSGoogle Scholar
  19. 19.
    Zondy JJ (1998) Opt. Commun. 149:181CrossRefADSGoogle Scholar
  20. 20.
    Balakrishnan A et al. (1996) Opt. Lett. 21:952ADSGoogle Scholar
  21. 21.
    Birks TA, Knight JC, Russell PSJ (1997) Opt. Lett. 22:961CrossRefADSGoogle Scholar
  22. 22.
    Limpert J et al. (2003) Opt. Express 11:818ADSCrossRefGoogle Scholar
  23. 23.
    Koplow JP, Kliner DAV, Goldberg L (2000) Opt. Lett. 25:442CrossRefADSGoogle Scholar
  24. 24.
    Richter D, Erdelyi M, Tittel FK (2001) Ultra-compact mid-IR spectroscopic source based on frequency converted Yb-Er/Yb fiber amplified cw diode lasers. In: OSA Trends in Optics and Photonics: Advanced Solid-State Lasers ed. by Marshall C. Opt. Soc. Amer., WAGoogle Scholar
  25. 25.
    Myers LE et al. (1996) Opt. Lett. 21:591ADSGoogle Scholar
  26. 26.
    McManus JB, Kebbabian PL, Zahniser MS (1995) Appl. Opt. 34:3336ADSCrossRefGoogle Scholar
  27. 27.
    Jundt D (1997) Opt. Lett. 22:1553CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Earth Observing LaboratoryNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations