Applied Physics B

, Volume 82, Issue 2, pp 203–206 | Cite as

Soliton complexes and flat-top nonlinear modes in optical lattices

Article

Abstract

We describe a continuous analog of the quasirectangular flat-top nonlinear modes earlier found for discrete nonlinear models. We show that these novel nonlinear modes can be understood as multi-soliton complexes with either in-phase or out-of-phase neighboring solitons trapped by the periodic potential of the lattice. We demonstrate a link between the flat-top states and the truncated nonlinear Bloch waves, and discuss how these nonlinear localized modes can be monitored experimentally in photonics and Bose–Einstein condensates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christodoulides DN, Lederer F, Silberberg Y (2003) Nature 424:817CrossRefPubMedADSGoogle Scholar
  2. 2.
    Kivshar YS, Agrawal GP (2003) Optical Solitons: From Fibers to Photonic Crystals. Academic, San Diego, CA, p 540Google Scholar
  3. 3.
    Christodoulides DN, Joseph RI (1988) Opt. Lett. 13:794ADSCrossRefGoogle Scholar
  4. 4.
    Lederer F, Damanyan S, Kobyakov A (2001) Discrete solitons, in: Trillo S, Torruellas W (eds) Spatial Solitons. Springer, Berlin, p 269Google Scholar
  5. 5.
    Neshev D, Sukhorukov AA, Hanna B, Krolikowski W, Kivshar YS (2004) Phys. Rev. Lett. 93:083905CrossRefPubMedADSGoogle Scholar
  6. 6.
    Eisenberg HS, Silberberg Y, Morandotti R, Boyd AR, Aitchison JS (1998) Phys. Rev. Lett. 81:3383CrossRefADSGoogle Scholar
  7. 7.
    Fleischer JW, Carmon T, Segev M, Efremidis NK, Christodoulides DN (2003) Phys. Rev. Lett. 90:023902CrossRefPubMedADSGoogle Scholar
  8. 8.
    Neshev D, Ostrovskaya EA, Kivshar YS, Krolikowski W (2003) Opt. Lett. 28:710PubMedCrossRefADSGoogle Scholar
  9. 9.
    Fratalocchi A, Assanto G, Brzdakiewicz KA, Karpierz MA (2005) Opt. Lett. 30:174CrossRefPubMedADSGoogle Scholar
  10. 10.
    Darmanyan S, Kobyakov A, Lederer F, Vázquez L (1999) Phys. Rev. B 59:5994CrossRefADSGoogle Scholar
  11. 11.
    Kartashov YV, Vysloukh VA, Torner L (2004) Opt. Express 12:2831CrossRefADSGoogle Scholar
  12. 12.
    Louis PJY, Ostrovskaya EA, Savage CM, Kivshar YS (2003) Phys. Rev. A 67:013602CrossRefADSGoogle Scholar
  13. 13.
    Anker T, Albiez M, Gati R, Hunsmann S, Eiermann B, Trombettoni A, Oberthaler MK (2005) Phys. Rev. Lett. 94:020403CrossRefPubMedADSGoogle Scholar
  14. 14.
    Pelinovsky DE, Sukhorukov AA, Kivshar YS (2004) Phys. Rev. E 70:036618CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Chen Z, Acks M, Ostrovskaya EA, Kivshar YS (2000) Opt. Lett. 25:417CrossRefADSGoogle Scholar
  16. 16.
    Kivshar YS, Peyrard M (1992) Phys. Rev. A 46:3198CrossRefPubMedADSGoogle Scholar
  17. 17.
    Konotop VV, Salerno M (2002) Phys. Rev. A 65:021602(R)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Louis PJ, Ostrovskaya EA, Savage C, Kivshar YS (2003) Phys. Rev. A 67:013602CrossRefADSGoogle Scholar
  19. 19.
    Zobay O, Pötting S, Meystre P, Wright EM (1999) Phys. Rev. A 59:643CrossRefADSGoogle Scholar
  20. 20.
    Ahufinger V, Sanpera A, Pedri P, Santos L, Lewenstein M (2004) Phys. Rev. A 69:053604CrossRefADSGoogle Scholar
  21. 21.
    Trombettoni A, Smerzi A (2001) Phys. Rev. Lett. 86:2353CrossRefPubMedADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Nonlinear Physics Center and Australian Center for Quantum-Atom Optics (ACQAO), Research School of Physical Sciences and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations